Vol. 6, No. 1: 1-6

Linear Grouping—A Method
for Optimizing 3D Vertex
Transformation and Clipping

Jonathan Dinerstein
Sorenson Media, Inc.

Larre Egbert and Nick Flann
Utah State University

Abstract. This paper introduces linear gouping, a slightly lossy optimization
technique for affine transformation of rigid vertex data. This technique is beneficial
when vertex transformation is of notable cost, such as in software rendering systems
and applications and where visual correctness is sufficient, for example games, simu-
lators, and other real-time applications. In practice, linear grouping (nearly visually
lossless) eliminates approximately 55% of the vertices in an average polygonal mesh,
reducing transform overhead by about 50% and clipping overhead by about 32%.

1. Introduction

The polygon mesh is popular in computer graphics due to ease of rendering.
However, mesh representation is plagued with one particular problem: geom-
etry processing overhead. As stated by Hoppe [Hoppe 98], in many situations
“geometry processing proves to be the bottleneck”, not the rasterization of
polygons. It is because of this geometry-processing bottleneck that most real-
time applications, such as simulation and entertainment, use sparse meshes
composed of only a few large polygons. A major portion of geometry process-
ing is vertex transformation and clipping.

Approaches to reducing transformation overhead include simplifying the
mathematics [Thompson 90], level of detail [Heckbert, Garland 94],[Hoppe

© AK Polers, Lid,
1 1086-7851/01 $0.50 per page

2 journal of graphics tools

98], SIMD (such as Intel SSE), and hardware implementations. While effective
in reducing computational requirements, these methods are limited because
they do not eliminate any required transformations. Further, the standard
approach to clipping requires all vertices to be transformed, regardless of
whether they will be discarded.

2. Linear Groups

Surprisingly, for most polygon meshes, it is possible to group many vertices
into sets of three or more that are (nearly) colinear. Each of these sets can
be represented by keeping two vertices, V1 and V2, to define the line, and
replacing each other vertex @ by its parameter ¢ [O’Rourke 98]

Q(t) =t + (V2 — V1) + V1. (1)

Of course, it is rare for three vertices to be exactly colinear. We define a
threshold e, the maximum distance between a line and the vertices associated
with it. There is a quality/time tradeoff based on this value. A good metric
for the value of ¢ is the size of the polygon model being considered. We have
found that 0.5% < e < 1.5% of the object coordinate space is effective (see
Figures 1-2). Equations for computing point-to-line distance and projection
are presented on the web site given at the end of this paper.

Linear grouping has two main steps: (1) constructing the linear groups,
and (2) transforming and reconstructing the vertices from the groups. Step
1 is performed only once, at either creation or initialization; we describe our
algorithm in Section 3. Step 2 is performed on a frame-by-frame basis, as
discussed below.

To transform all points on the line, we first transform V'1 and V2, computing

VI =Mx*V1,
V2 =M+ V2,
L'=V2-VI1, (2)

at the cost of two homogeneous matrix multiplications plus a vector subtrac-
tion. The remaining points can be transformed by

Q@)=t+xL + VY (3)

at a cost of one scalar-vector multiplication and one vector-vector addition —
significantly less than a matrix multiplication.

Clipping is computed by transforming only the defining vertices to normal-
ized projection space. The line-segment defined by these vertices is clipped

Dinerstein et al.: Linear Grouping—Optimizing 30 Vertex Transformation and Clipping 3

against a canonical view volume, using an algorithm such as the Cohen-
Sutherland clipper [Foley et al. 95). If the line segment. is trivially accepted or
rejected, it is known that all grouped vertices must also be accepted /rejected.
This not only allows many vertices to be clipped for free, but also does not
require tranformation of all vertices in order to clip. If the line segment cannot
be clipped trivially, then the grouped vertices must be clipped exhaustively.!

3. Constructing Linear Groups

We want to find a linear grouping (set of lines) that eliminates as many ver-
tices as possible; finding a good (or best) grouping is an optimization problem.
We use a branch-and-bound algorithm, performing a recursive search of pos-
sible groupings in best-first order. The best-first order is computed before
searching, building a table of all possible vertex pairs, storing the number of
vertices that fall within e of the line — a pair that groups more vertices is
considered better than one that groups fewer.

find.grouping (G: groups that have been constructed
D: vertices used to define groups
FP: vertices that have been grouped
F: vertices still free)

for each unordered pair of vertices (V1,V2) in D or F
in order of best-to-worst-quality
consider line L= (V1,V2)

designate candidate group Gc

construct set € of all vertices in F that
meet bounds and that lie withineof L

if candidate group Ge does not meet bounds then reject,
else

find grouping (G +Ge, D+ V1+ V2, P+ C, F-C-V1-V2)
if no candidate groups could be constructed

if (has best quality so far
BestSoFar + &

10ne might consider finding the parameters where the line intersects the view volume,
and using these to clip grouped vertices. However, in our experience, this is usually just as
expensive as clipping the grouped vertices exhaustively.

4 joumnal of graphics tools

Without the use of bounds, this O(n * n!) algorithm would be too costly
to be practical. Note that by searching best-first, the bounds can eliminate
searches that would not produce a higher quality solution. We use two frue
bounds that do not affect the quality of the result:

s No nonproductive groups. Do not accept a candidate group if C is empty.

o Cannot be best solution. Do not accept a candidate group if |F + P| <
|BestSoFar.P| (where |s| is the cardinality of the set s).

We also use two heuristic bounds that dramatically speed up the algorithm
but might impact quality:

e Average group size. Do not accept a candidate group if it is predicted
that not enough vertices will be grouped as the partial solution is com-
pleted; |F + P| is compared against the average group size in G. This
reduces the number of vertices grouped by 1% on average.

¢ Bounding boz. Only consider vertices for grouping on line L that are
within a bounding box defined by V1 and V2 £ e. This reduces the
number of vertices grouped by 3% on average. Clipping, as presented
in this paper, requires this bound to reduce groups from infinite lines to
line segments.

Due to the best-first ordering, the algorithm tends to find good solutions
early. To further speed operation, the search can be terminated after a pre-
determined amount of time or number of solutions. In fact, experimentation
has shown that the optimal solution is usually found initially, so we can often
accept the first solution. If there are simply too many vertices, they should
be partitioned and linearly grouped separately.

3.1. Results

An experiment was performed in which the optimization algorithm described
in this paper was implemented. The test material included a broad variety
of 3D meshes. Using an e of 0.5% of the object coordinate space, 55% of
all vertices in an average mesh were eliminated. The average linear group
contained about 1.5 grouped vertices. Execution time was only seconds for
meshes below three hundred vertices. Minutes were required for meshes up
to seven hundred vertices. Through octtree partitioning, data sets of several
thousand vertices were linearly grouped in minutes. This experiment was
performed on a 333 MHz processor.

Most error from linear grouping is at locations of high detail (Figures 1-2).
This error can be greatly reduced (or visually eliminated) by adapting € to
the local topology of the model. This usually has very little impact on the
total number of vertices grouped.

Dinerstein et al.: Linear Grouping—Oplimizing 3D Vertex Transformation and Clipping 5

Figure 1. Cat statue model, rendered with a 3D marble texture. The original
model is on the left, and the linear grouped model (with ¢ = 0.5% of the object
coordinate space) is on the right. As can be seen, there is very little difference. In
fact, without the 3D texture, they are virtually indistinguishable. Linear grouping
eliminated over 55% of the vertices.

4. Discussion

The primary weakness of linear grouping is its lossy behavior. However, since
the method is meant for real-time or interactive rendering, this is acceptable.
Also, linear grouping has only been applied to vertex transformation; normal
transformation is not benefited. Further, only linear transformations can be
performed.

Linear grouping is applicable for implementation in current rendering sys-
tems and hardware, as its implementation is simple and fits naturally into
most pipelines. However, the overall benefit of linear grouping is inherently
limited by how large an overhead vertex transformation and clipping are.
Therefore, this method is most beneficial to software rendering systems and /or
applications where vertex transformation is of notable cost.

Figure 2. The original Utah teapot in blue is shown on the left. On the right, the
red teapot using linear grouping with ¢ = 0.5%. Areas of very fine detail (such as
the lid handle) are most prone to error.

6 journal of graphics tools

We have primarily tested using object models. However, we expect that
linear grouping could also work well for terrain fields. Most terrain fields
naturally have X and ¥ coordinates in common, being on a grid. Therefore,
finding three or more near-colinear vertices should be very common. Terrain
rendering is also more tolerant to error than shapes like curved surfaces.

References

[Foley et al. 95] [1] J. Foley, A. van Dam, S. Feiner, and J. Hughes. Compuler
Graphics: Principles and Practice. Second edition. Reading, MA: Addison-
Wesley. 1995.

[Heckbert, Garland 94] P. S. Heckbert, and M. Garland. “Multiresolution Modeling
for Fast Rendering. In Graphics Interface 94, pp. 43-50.

[Hoppe 98] H. Hoppe. “Smooth View-Dependent Level-of-Detail Control and its
Application to Terrain Rendering.” In IEEE Visualization 19298, pp. 35-42.

[O’Rourke 98] J. ORourke. Computational Geomelry In C, Second edition. Cam-
bridge, UK: Cambridge University Press, 1998,

[Thompson 90] Kelvin Thompson. “Fast Matrix Multiplication.” In Graphics Gems,
edited Andrew Glassner, pp. 460-461, Cambridge, MA: Academic Press, 1990.

Web information:

Source code and Mrther algorithm details and results are available at
http://www.acm.org/jgt/papers/DinersteinEgbertFlann01/

Jonathan Dinerstein, Sorenson Media, Inc., 570 Research Parkway, Suite 102, North
Logan, UT 84341 (jon@sorenson.com)

Larre Eghert, Computer Science Department, Utah State University, UMC 4205,
Logan, Utah, 84322-4205 (larre@cs.usu.edu)

Mick Flann, Computer Science Department, Utah State University, UMC 4205,
Logan, Utah, 84322-4205 (flann®nick.cs.usu.edu)

Received April 10, 2000; accepted in revised form April 22, 2001.

