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Abstract
With the growth in utilizing desktop sharing and remote control applications in recent years for many purposes like online
education and remote working, quality assessment (QA) of screen images has become a hot topic. It could be used to enhance
the user’s quality experience. Currently, most screen image QAmethods require a reference image, and the existing blind/no-
reference methods do not consider both the image’s content and chrominance degradations. This paper proposes a novel
blind quality assessment method for screen content images (SCIs) through block-based content representation, which extracts
content- and chromatic-based features on local, semi-global, and global scales. Our proposed edge histogram descriptor-
and statistical moment-based (EHDSM) method divides the image into 16 blocks and then describes each block using its
local edge and semi-global chrominance features. It also takes the global chrominance features into account to investigate
how the image’s color information is changed in the presence of chrominance distortions. Local features are extracted using
edge histogram descriptor, while the semi-global and global features are measured by computing the statistical moments.
Next, the quality assessment is achieved by training a support vector regression (SVR) model. Extensive experiments on three
commonly used SCI datasets have verified the superiority of our proposed EHDSMmethod compared with the state-of-the-art
blind screen content image quality assessment methods.

Keywords Image quality assessment (IQA) · Screen content image (SCI) · Edge histogram descriptor (EHD) · Image content
descriptor · Chrominance features

1 Introduction

The popularity of screen content images (SCIs) has risen
by their utilization in applications such as online gaming,
mobile Web browsing, screen sharing, and remote controls
[1]. SCIs are basically a combination of natural scene images
(NSIs) and computer-generated graphics, shapes, and texts.
Thus, compared with NSIs, they usually have sharp edges,
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high contrast, and limited colors in specific regions [2, 3].
However, similar to NSIs, they lose their quality during the
processing, compression, or transmission. Therefore, exist-
ing natural scene image quality assessment methods cannot
efficiently evaluate the quality of SCIs, and their quality
needs to be assessed using specifically designed SCI quality
assessment (SCIQA) methods [4].

On the other hand, the original or reference image is
unavailable in most cases, such as the remote screen sharing
and transmission applications. As a result, no-reference or
blind image quality assessment (BIQA)methods are the only
choices. Several BIQA methods are designed to assess the
perceptual quality of NSIs. Representative methods include
natural image quality evaluator (NIQE) [5], integrated local
NIQE (ILNIQE) [6], blind/referenceless image spatial qual-
ity evaluator (BRISQUE) [7], and gradientmagnitude and the
Laplacian of Gaussian (GM-LoG) [8]. Specifically, NIQE
[5] uses natural scene statistics (NSS) to derive statistical
features from the image. ILNIQE [6] improves NIQE by
designing and training a multivariate Gaussian model using
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five types of NSS features. BRISQUE [7] uses the locally
normalized luminance coefficients of an image to calcu-
late its NSS. GM-LoG [8] proposes the joint statistics of
two features including gradient magnitude and Laplacian of
Gaussian to calculate the NSS of an image. However, these
models cannot effectively evaluate the quality of the SCIs [9,
10] due to their distinct characteristics of computer-generated
graphics, shapes, and texts. Yang et al. [11] also demon-
strate that the intensity distribution of the SCIs and NSIs is
remarkably different. Hence, researchers have recently pro-
posed several specifically designed blind SCIQA (BSCIQA)
methods to assess the perceptual quality of SCIs. These
methods can generally be classified into three categories,
namely feature extraction-based, codebook-based, and neu-
ral network-based methods.

The first category includes methods that extract features
capable of capturing the characteristics of SCIs. Represen-
tative blind methods include the blind quality measure for
SCIs (BQMS) [2], screen image quality evaluator (SIQE) [3],
no-reference luminance and texture-based method (NRLT)
[12], BSCIQA by orientation selectivity mechanism (OSM)
[13], the hybrid region features fusion method (HRFF) [14],
the perceptual quality measure by spatial continuity (PQSC)
[9], and quality assessment of SCIs via Fisher vector coding
(FVC) [15]. BQMS extracts screen content-based features
via free energy theory [16] and structural degradation model.
SIQE extracts four types of features, including image com-
plexity, screen content statistics, global brightness quality,
and sharpness of details. NRLT exploits statistical luminance
features in the form of histograms and also extracts statisti-
cal texture features by employing the local binary patterns
(LBP) descriptor [17]. OSM employs the orientation selec-
tivity mechanism [18] to extract the orientation information
to describe the distortedSCIs. It also uses structure features as
complementary information to further describe SCIs. HRFF
first segments SCIs into sharp edge patches (SEPes) and non-
SEPes and then extracts features such as entropy, contrast,
and sharpness loss. It finally combines these features with
global features extracted by theBRISQUE [7]method. PQSC
extracts statistical chromatic and texture features to repre-
sent the chromatic continuity and degree of texture variation
in SCIs. FVC employs the Fisher vector coding technique
to represent SCIs using offline-generated Gaussian mixture
models. To assess the SCI’s quality, these methods usually
train a machine learning model such as SVR [2, 9, 15] using
the subjective scores, also known as mean opinion scores
(MOSs), which are the mean value of subjects’ ratings, as
the ground truth. Also, sometimes difference mean opinion
scores (DMOSs) are used as the ground truth, which are the
difference in quality between images [11, 19–21].

The second category includes methods that employ dic-
tionary learning algorithms to create and learn a codebook
or dictionary, which will be used to predict the quality

of SCIs. Representative blind methods include content-
specific codebooks (CSC) [22] and macro-micro-modeling
of tensor domain dictionary (MMMTDD) [23]. The CSC
method learns a codebook by training the K-singular value
decomposition (K-SVD) dictionary learning algorithm [24]
over small pictorial and textual patches. It then uses the
sparse representation to effectively encode the patches via
learned codebooks. Finally, it employs a pooling scheme
to aggregate these patch-based codebooks to describe dis-
torted SCIs. MMMTDD employs tensor decomposition to
learn a dictionary with the principal components. It then
uses a macro-micro-model to automatically generate micro-
and macro-features in the dictionary space. Micro-features
describe the particularity of the statistical distribution of
sparse codes and macro-features describe the relationship
between the statistical distribution and quality degradation
of SCIs. Both CSC and MMMTDD methods use SVR with
the radial basis function (RBF) kernel to produce the quality
score for a distorted SCI image.

The third category includes methods that employ neu-
ral networks and deep learning to assess the quality of
SCIs. Representative blind methods include pseudo-natural
input convolutional neural network (PICNN) [25], blind SCI
quality assessment using stacked auto-encoders (BSCIQA-
SAE) [26], and quadratically optimized model based on the
deep convolutional neural network (QODCNN) [27]. PICNN
employs a naturalization module to make SCIs more similar
to natural images to extract deeper information. BSCIQA-
SAE trains two SAEs and two regressors on hand-crafted
features extracted from pictorial and textual regions to pre-
dict the quality of pictorial and textual areas separately. The
two predicted scores are fused to produce the final per-
ceptual quality score. QODCNN pre-trains a CNN model
on some SCI patches and fine-tunes the pre-trained model
with selected distorted image patches. An adaptive pool-
ing scheme is then used to combine the quality scores from
patches to measure the quality of an image.

Earlier feature extraction-based BSCIQA methods [2, 3]
generally assume that the features follow certain distribu-
tions and utilize parametric models to extract quality-aware
features [9]. Parametric model-based IQA methods assume
that the extracted features for representing the image con-
tent follow a certain mathematical model or distribution [9],
which may lead to information loss and inconsistency with
human judgments. Furthermore, the majority of BSCIQA
methods do not consider the chrominance information of an
image, which has proven to be effective in both the blind
and full-reference (FR) SCIQA or other areas of image
quality assessment [9, 28, 29] since the human visual sys-
tem (HVS) is highly sensitive to such information [30].
The codebook-based methods usually evaluate the quality
of SCIs by automatically extracting and aggregating features
from SCIs. However, the feature aggregation approach (e.g.,
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Fig. 1 Framework of the proposed EHDSM method. ⊕ indicates the
concatenation operation. feati (i = 1, 2, . . . , 16) is the concatenated
local and semi-global feature vector of the i-th block, which are further
concatenated with the global features featglobal to form the final feature
vector

percentage-based pooling [22] and log-normal distribution-
based local pooling [23]) is still the bottleneck of these
methods and has not been effectively resolved yet. Neural
network-based methods highly depend on the availability of
comprehensive SCI datasets. A majority of existing neural
network-based SCIQA methods [25–27] focus on propos-
ing practical training approaches to tackle the issues of the
lack of large SCI datasets. However, these practical training
approaches are not entirely successful.

Considering the HVS-compatible statistical details of an
image [31] and the importance of zero-crossing at multiple
scales [32], we propose an edge histogram descriptor- and
statistical moment-based (EHDSM) method to address the
aforementioned limitations associatedwith feature extraction-
based BSCIQA methods. EHDSM incorporates the his-
togram of edges and chrominance information at three
scales (i.e., local, semi-global, and global scales) to extract
quality-aware features without using a parametric model.
Specifically, it converts a distorted SCI to the YCbCr color
space and divides it into non-overlapping 4 × 4 blocks, as
shown in Fig. 1. The YCbCr color space is more compatible
with SCI’s characteristics and therefore yields better assess-
ment results [10, 28]. It is also suggested by ITU-R BT.601
for video broadcasting (i.e., visuals displayed on screens).
Next, it extracts features at local and semi-global scales from
each block and at the global scale from the whole image. Par-
ticularly, local features are derived using the edge histogram
descriptor (EHD) by computing the frequency of five types
of edges. Semi-global and global scale features are chromi-
nance information computed using first- and second-order
statistical moments (i.e., mean and standard deviation).

The proposed EHDSM method makes the following con-
tributions: (1) introducing a blind block-based image quality
assessment method to extract local content-based and semi-

global and global chrominance features to effectively capture
the effects of different distortion types and levels of SCIs;
(2) describing the content variation (i.e., pictorial and tex-
tual content) within an image with the HVS compatible edge
histogram descriptor on a local scale; (3) extracting chro-
matic information using the statistical moments based on
the content variation of an image (i.e., semi-global features)
and its global statistics; 4) achieving superior accuracy and
computational run-time on three common SCI datasets com-
pared with four NSI BIQA methods, seven state-of-the-art
BSCIQAmethods, and eight variantmethods of theEHDSM.

The rest of this paper is organized as follows: Section 2
presents the proposed EHDSM blind SCIQA method. Sec-
tion 3 compares the performance of the proposed method
with the state-of-the-art BSCIQA methods on three publicly
available SCI datasets. Section 4 draws the conclusion.

2 Proposedmethod

Edges and edge histograms are important and powerful fea-
tures that have been commonly used for quality assessment
for a large variety of images ranging from NSIs to SCIs [33].
Due to the high correlation of edge features with most struc-
tural distortions, a number of IQA techniques employ edges
to represent the image content toward capturing the effect
of distortions [34, 35]. For example, FR SCIQA methods
such as gradient similarity score (GSS) [36], edge simi-
larity (ESIM) [37], and multi-scale difference of Gaussian
(MDOG) [38] use edge width, contrast, strength, and direc-
tion to measure the image quality. To improve efficiency
and generalizability, normalization techniques can be further
employed to make edge histograms invariant to translation,
scale, and rotation and therefore enrich edge features to rep-
resent an image and capture its quality [39, 40].

As mentioned earlier, many studies employ edges and
histograms to represent images. However, the integration of
content descriptor-based edge histograms with the chromi-
nance features has not been fully explored in BSCIQA,
and there is room for improvement. Unlike histogram- or
moment-based methods, which often treat images as a set of
independent pixels, the proposed method takes into account
the spatial arrangement of pixels by calculating the distribu-
tion of the proposedfive edge types through the image blocks.
Furthermore, by computing statistical moments across each
channel of the entire image as well as its constituent blocks,
our model gains the capability to comprehensively measure
the overall changes in both content and chrominance infor-
mation throughout the image. Our proposed blind screen
content quality assessment method utilizes edge histograms
(i.e., EHD) to capture edge variations in image blocks instead
of the whole image to effectively describe the content of
each block and the content variations among blocks. To
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the best of our knowledge, current BSCIQA methods have
rarely considered the chrominance information loss when
constructing feature extraction-based metrics for quality
measurement. Therefore, the performance of the state-of-the-
art content-based IQAmethods drops when color distortions
are introduced. For instance, their performance is very poor
in the presence of the color saturation change (CSC) distor-
tion (refer to Table 4). Our EHDSM blind SCIQA method
proposes an integrated hierarchical content and color fea-
ture extraction scheme to capture the content’s clarity and
variation (i.e., textual and pictorial contents) alongside the
chrominance richness to effectively describe SCIs distorted
under different distortion types and levels.

Observing SCIs often contains a variety of content includ-
ing natural scenes, shapes, text, and graphics, we uniquely
extract local EHD features [41] from the Y channel in the
YCbCr color space to capture changes in brightness, which
usually result in edges within various content. These local
EHD features represent the frequency and the directionality
of the brightness changes in an image and distinguish how the
image content is distributed. Furthermore, the HVS is highly
sensitive to the chrominance information of an image [28].
Therefore, we use the first and second statistical moments
frombothCb andCr channels to extract chrominance features
at semi-global and global scales to measure the image’s qual-
ity. These two kinds of features complement each other and
are fused in the proposed method to provide highly discrimi-
native power to assess the quality of the image. The SVRwith
the RBF kernel is trained to map the extracted quality-aware
features to their corresponding subjective quality scores. In
the following subsections, we explain how to extract features
at different scales in more detail.

2.1 Local features: EHD

Local features have been used in many IQA studies to rep-
resent the frequency and directionality of the brightness
changes in an image and distinguish how the image con-
tent is distributed. However, our work focuses on describing
the pictorial and textual content of an image via five types of
edge patterns. In other words, we employ edge histograms
to describe the content of each block and the content vari-
ations among blocks to more accurately represent SCIs. To
this end, we convert an SCI image to the YCbCr color space
and divide the Y channel of the distorted SCI into nonover-
lapping 4 × 4 blocks (i.e., 4 blocks in the row direction and
4 blocks in the column direction) to ensure 16 blocks are
produced regardless of the image size. This is done to get a
fixed-size feature vector for each image. For each block, we
then extract non-overlapping 2× 2 image patches (i.e., local
scale). For each patch, we check the presence of five edge
types via the following equation:

Fig. 2 Filter coefficients corresponding to 5 edge types

max{mv,mh,md45,md135,mnd} > Tedge (1)

where Tedge is a threshold parameter (empirically set to 16)
and mv , mh , md45, md135, and mnd are the edge magni-
tudes of vertical, horizontal, 45-degree diagonal, 135-degree
diagonal, and non-directional edges, respectively. Equation 1
indicates that the patch contains significant edge information
when the maximum value of the five computed edge mag-
nitudes is greater than the threshold. Otherwise, the patch
contains little edge information. The edge magnitude mdir

(dir = {v, h, d45, d135, nd}) corresponding to one edge
direction is computed by applying the respective edge fil-
ter shown in Fig. 2 on a given image patch as follows:

mdir =
∣
∣
∣
∣
∣
∣

2
∑

i=1

2
∑

j=1

P(i, j) × edir(i, j)

∣
∣
∣
∣
∣
∣

(2)

where P is the 2 × 2 image patch and edir is the edge filter
corresponding to one of the five directions (dir = {v, h, d45,
d135, nd}) shown in Fig. 2.

For each block at the local scale, we construct two 5-bin
histograms, where each bin contains information regarding
each of the five edge types. One 5-bin histogram EHDA con-
tains the count of each edge type and another 5-bin histogram
EHDB contains the magnitudes of each edge type. When
any patch within a block contains significant edge or non-
edge information measured by the predetermined threshold
parameter Tedge, the corresponding histogrambin of the dom-
inant edge type in EHDA and EHDB increases by 1 and by
the magnitude of the dominant edge, respectively. The total
number of all patches in a block and the sum of the domi-
nant edge magnitude within a block are, respectively, used to
normalize EHDA and EHDB to achieve more invariance and
robustness. The i-th image block is described by a 10-bin
local EHD feature featilocal as follows:

featilocal = [EHDi A ,EHDiB ] (3)

where EHDi A and EHDiB are the normalized EHDA and
EHDB of the i-th image block, respectively.

Figure 3 presents two samples of SCI blockswith different
content types and their corresponding normalized histograms
showing distributions of five kinds of edge types at verti-
cal, horizontal, 45-degree diagonal, 135-degree diagonal, and
non-directional orientations in EHDA and EHDB . It shows
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Fig. 3 SCI blocks with different content types and their histograms by
concatenating two normalized 5-bin histograms EHDA and EHDB . Top
row: a sample SCI block with only textual content and its histogram.
Bottom row: a sample SCI block with only pictorial content and its
histogram

that non-directional edge types are the common edge types
for both SCI blocks. However, the block with textual content
clearly has more vertical and horizontal edge types (i.e., bin
numbers 1 and 2 in both normalized EHDA and EHDB or
bin numbers 1, 2, 6, and 7 in the local 10-bin EHD, a con-
catenated histogram) than other directional edge types due
to its sharp edges of the textual content in both vertical and
horizontal directions. The block with pictorial content tends
to have more horizontal edge types (i.e., bin number 2 in
both normalized EHDA and EHDB or bin numbers 2 and 7
in the local 10-bin EHD) than the remaining directional edge
types (i.e., vertical, 45-degree diagonal, and 135-degree diag-
onal). They also tend to be equally distributed due to the sharp
edges of pictorial content in all orientations. These two exam-
ples demonstrate that the local 10-bin EHD of an SCI block
captures the distribution of edge orientations and therefore
captures the differences among various content types within
a block. Since the objects within an image mainly occur at
larger scales (i.e., image blocks), the edge histogram of a
block differs according to the object content and different
blocks capture various content types of different objects. As
a result, the local EHD features capture the content within a
block better and lead to a meaningful description of objects
at different locations and different scales.

2.2 Semi-global and global chrominance features:
statistical moments

The formulated local information, as explained in the pre-
vious section, has been proven to be an efficient way to

represent the content of an image. In addition, local statis-
tics are proper features to capture distortions since they
are usually altered with the change of distortions, specifi-
cally the luminance change [42]. However, local statistics
cannot effectively represent the whole image since some
distortions affect the chrominance channels and some distor-
tions degrade the entire image. For instance, color saturation
change, which occurs when sharing a screen between dif-
ferent devices [28], alters the color instead of the structural
information of an image.

To capture distortions at different scales, we propose
to extract semi-global and global chrominance features to
quantify and characterize the chrominance information of a
distorted SCI. Instead of extracting the statistical informa-
tion only from an entire image, we extract and combine the
statistical information from both the non-overlapping image
blocks and the entire image. This enables us to capture the
color degradation in different regions of an image. Inspired
by the study in [43], we compute the first- and second-order
statistical moments (i.e., mean and standard deviation) to
describe the semi-global chrominance features of each block
and the global chrominance features of an image. Specifi-
cally, we use the statistical moments of each non-overlapping
4 × 4 block from both Cb and Cr channels to represent the
chrominance features of an image on the semi-global scale.
For the i-th block (i = 1, ..., 16), the mean μi and standard
deviation σi of each channel are computed by:

μi = 1

Ni

∑

(x,y)

BLi (x, y) (4)

σi =
√

∑

(x,y)(BLi (x, y) − μi )2

Ni
(5)

where BLi is the i-th block of an SCI in theCb orCr channel,
(x, y) is the coordinate location for the pixels in the i-th
block, and Ni is the total number of pixels in the i-th block.
Each image block is described by a 4-bin semi-global feature
as follows:

featisemi−global = [μiCb
, μiCr , σiCb

, σiCr ] (6)

where μiCb
and μiCr are, respectively, the mean value of

the i-th image block in the Cb and Cr channels, and σiCb
and σiCr are, respectively, the standard deviation of the i-th
image block in the Cb and Cr channels. Similarly, we use the
same statistical moments of the whole image from all three
channels (i.e., Y , Cb , and Cr) to represent the chrominance
features of an image at the global scale as follows:

featglobal = [μY , μCb , μCr , σY , σCb , σCr ] (7)
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where μY , μCb , and μCr are, respectively, the mean value of
an image in the Y , Cb, and Cr channels, and σY , σCb , and σCr

are, respectively, the standard deviation of an image in the
Y , Cb, and Cr channels.

It should be noted that both semi-global and global fea-
tures are normalized by dividing their mean and standard
deviation statistics by the maximum intensity value (i.e.,
255).

The final feature vector of a distorted SCI is obtained by
concatenating the 10-bin local and 4-bin semi-global feature
vectors of all 16 blocks with the 6-bin global feature vector
as follows:

feature = [feat1, feat2, ..., feat16, featglobal ] (8)

where feati is the concatenated local and semi-global feature
vector [featilocal , featisemi-global] of the i-th image block.

As a result, we obtain a 230-dimensional feature vector to
describe a distorted SCI from its corresponding 16 blocks,
where 160 values are for local features (i.e., 80 (16 × 5)
values are for normalized EHDA and 80 (16 × 5) values are
for normalized EHDB), 64 (16×4) values are for semi-global
features, and 6 values are for global features from the entire
image.

To enhance the edge patterns with small magnitudes and
ensure features with high and low values would contribute
equally without any biases, we use the square-root operation
to normalize the final 230-dimensional feature vector [44]
by:

F = [√ f1,
√

f2, . . . ,
√

fi , . . . ,
√

f230] (9)

where fi is a value in the final 230-dimensional feature vec-
tor.

2.3 Quality regression

After feature extraction, similar to [9, 12, 45], we use SVR
provided by the LIBSVM package [46] to map the extracted
230-dimensional quality-aware features F to their corre-
sponding subjective quality scores. We choose SVR in our
method since it automatically learns to differentiate the effect
of various distortions and gives us the flexibility to define
acceptable errors and find an appropriate hyperplane to fit
the data. We use the RBF with gamma = 1, cost = 128, and
epsilon = 1 since these are optimal values used in NRLT
[12] and PQSC [9]. To ensure a fair evaluation, we randomly
divide each dataset into training and testing subsets 1000
times and use 80% of the data for training SVR and the rest
for testing. The median of the 1000 results is reported as the
overall performance.

3 Experimental results

We evaluate the IQA performance of the proposed EHDSM
method on three publicly available SCI datasets and compare
its performancewith seven state-of-the-artBSCIQAmethods
using three common evaluationmetrics. Our extensive exper-
iments demonstrate the superiority of the proposed EHDSM
method in terms of accuracy, monotonicity, consistency, and
computational run-time.

3.1 The testing datasets

We evaluate the proposed EHDSM method by conducting
experiments on three publicly available SCI datasets: screen
content image quality assessment database (SIQAD) [11],
screen content image database (SCID) [47], and quality
assessment of compressed SCI (QACS) [48]. SIQAD con-
tains 20 reference SCIs and 980 distorted images degraded
by seven types of distortions, includingGaussian noise (GN),
Gaussian blur (GB), motion blur (MB), contrast change
(CC), JPEG, JPEG 2000 (J2K), and layer segmentation-
based coding (LSC), each of which includes seven different
levels. SCID contains 40 reference SCIs with a resolution of
1280 × 720 and 1800 distorted images degraded by nine
types of distortions, including GN, GB, MB, CC, JPEG,
J2K, color saturation change (CSC), high efficiency video
coding (HEVC) and its extension for screen content coding
(SCC) indicated as HEVC-SCC, and color quantization with
dithering (CQD), each of which includes five different lev-
els. The QACS dataset contains 24 pristine reference SCIs of
a resolution of 2560 × 144, 1920 × 1080, and 1280 × 720,
coveringwide application scenarios and 492distorted images
degraded by two types of distortions, including HEVC and
SCC.

3.2 Evaluationmetrics and parameter setting

We use three common metrics [49] including Pearson’s lin-
ear correlation coefficient (PLCC), Spearman’s rank-order
correlation coefficient (SRCC), and root-mean-squared error
(RMSE), to measure the prediction accuracy, monotonicity,
and consistency [10, 50] of the eight compared BSCIQA
methods, respectively. PLCC represents the linear correlation
between the objective and subjective scores. SRCC repre-
sents the rank-order correlation between the objective and
subjective scores. RMSE measures the deviation between
the objective and subjective scores. A higher PLCC value
(close to 1), a higher SRCC value (close to 1), and a smaller
RMSE value (close to 0) indicate better performance (i.e.,
high degree of consistency between the objective quality
evaluation algorithm and subjective ratings). Following the
same procedures used in [9, 10, 49], we apply a nonlinear
logistic regression with five parameters to remove the non-
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Table 1 Comparison of the
performance of the proposed
EHDSM using different block
sizes on SIQAD, SCID, and
QACS datasets

Dataset Criteria Size: 2 × 2 Size: 4 × 4 Size: 6 × 6 Size: 8 × 8

PLCC 0.9151 0.9157 0.8925 0.8576

SIQAD SRCC 0.9034 0.9073 0.8869 0.8521

RMSE 5.7579 5.75261 6.4426 7.3066

PLCC 0.9192 0.9371 0.9101 0.8700

SCID SRCC 0.9162 0.9367 0.9095 0.8646

RMSE 5.5689 4.9468 5.8627 6.9867

PLCC 0.9461 0.9442 0.9296 0.9168

QACS SRCC 0.9393 0.9376 0.9205 0.9091

RMSE 0.7139 0.7268 0.8140 0.8804

linearity of objective quality predictions before calculating
the above three evaluation metrics as follows:

Zi = κ1

{
1

2
− 1

1 + exp [κ2(si − κ3)]
}

+ κ4si + κ5 (10)

where si is the perceived quality score of the i-th distorted
SCI computed by an IQA model, Zi is the corresponding
mapped predicted objective score, and κ1, κ2, κ3, κ4, and κ5
are the five parameters that are fitted during the curve-fitting
process.

The proposed EHDSM method has two main parameters
that need to be properly set to extract the final normalized
quality-aware features. The first and most important param-
eter is the block size, which allows the proposed method to
extract a fixed-size feature vector (e.g., 230 values when the
block size is 4 × 4) from an image of any resolution. The
second parameter is the threshold value required to catego-
rize a patch as edge or non-edge content. In the following,
we investigate the sensitivity of the proposed method to the
parameter setting by varying one parameter and fixing the
other one each time.

We evaluate the performance of the proposed EHDSM
method with different block sizes to empirically set the opti-
mal block size with respect to the obtained accuracy and
computational run-time. Since a larger block size leads to
more blocks in rowand columndirections, it results in a larger
feature vector and longer training and testing time of the SVR
model. For example, for a block size of 8 × 8, we obtain a
902-dimensional feature vector to describe a distorted SCI
from its corresponding 64 blocks, where 640 values are for
local features (i.e., 320 (64 × 5) values are for normalized
EHDA and 320 (64 × 5) values are for normalized EHDB),
256 (64 × 4) values are for semi-global features, and 6 val-
ues are for global features from the entire image. Its feature
length is almost 4 times of the length of the final normalized
quality-aware feature obtained from4×4 blocks. So,we limit
the largest block size to be 8×8 and evaluate the performance
of the proposed EHDSM method with four different block
sizes of 2×2, 4×4, 6×6, and 8×8. Table 1 lists the median

PLCC, SRCC, and RMSE values obtained by evaluating the
SVR model 1000 times on the SIQAD, SCID, and QACS
datasets using the proposed EHDSM method with each of
four block sizes and the threshold value of 16. It demon-
strates that the two smallest block sizes (i.e., 2×2 and 4×4)
achieve the best comparable results in terms of three metrics
on all three datasets. Specifically, the block size of 4×4 leads
to the best performance on SIQAD and SCID datasets, and
the block size of 2 × 2 leads to the best performance on the
QACS dataset. We empirically choose the block size of 4×4
in the proposed method due to its superior performance on
SIQAD and SCID datasets. Since SCID contains the largest
number of reference and distorted images in amid-resolution
(i.e., 1280×720) among the three datasets, it makes the infer-
ence of the trainedmachine learningmodel more reliable and
generalizable and supports the compatibility and capability
of the block size of 4 × 4 to represent SCIs in IQA tasks.

In addition, according to Table 1, while the block size
4 × 4 yields better results across the three datasets, the per-
formance of the proposed method drops on all datasets when
the block size increases from 4 to 6 and increases from 6 to 8.
This is mainly because increasing the block size significantly
increases the number of blocks, which subsequently leads to
the image being represented by a vast variety of contents. For
example, when the block size is equal to 4, an imagewould be
represented using 16 blocks with different content variations.
When increasing the block size to 6 or 8, an image would be
represented using 36 (6×6) or 64 (8×8) blocks, respectively.
Moreover, it also increases the dimension of local features
(36 × 10 and 64 × 10 for block sizes of 6 and 8, respec-
tively) and semi-global features (36×4 and 64×4 for block
sizes of 6 and 8, respectively). Therefore, considering a lim-
ited number of images in SCI datasets, learning an accurate
mapping from the extracted high-dimensional features to the
subjective scores is quite challenging, and it decreases the
performance of the proposed method.

We evaluate the performance of the proposed EHDSM
method with different threshold values to empirically set
the optimal threshold with respect to the obtained accuracy.
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Fig. 4 Plots of different metrics obtained by the proposed EHDSM
method using different threshold values on the SIQAD dataset. a PLCC
and SRCC values; b RMSE values

Patches with useful and effective content information tend to
have high PLCC and SRCC and lowRMSE values. However,
patches with noisy information tend to be incorrectly recog-
nized as useful edges, which may lead to inaccuracy in IQA
results. As a result, a relatively small threshold is preferred
to not only select useful and effective content information
but also eliminate the noise impacts. Since it is crucial to

capture and balance the effects of different content types and
noise levels, we experiment with 11 thresholds (i.e., 0, 5,
10, 11, 12, 13, 14, 15, 16, 18, and 20) and select an opti-
mal smallest threshold that leads to the highest SRCC and
PLCC and lowest RMSE values with smallest impact from
noises. Figure 4a, b plots median PLCC, SRCC, and RMSE
values obtained by evaluating the SVR model 1000 times on
the SIQAD dataset using the proposed EHDSMmethod with
each of 11 thresholds and the block size of 4 × 4. It shows
that EHDSMachieves improving IQAperformancewhen the
threshold increases. However, the highest IQA performance
in terms of the PLCC, SRCC, and RMSEmetrics is achieved
when the threshold is 16. Further increasing the threshold
leads to decreasing IQA performance. Based on the results
shown in Fig. 4, we empirically choose a threshold of 16 in
the proposed method since it is the smallest threshold that
captures and balances the effects of different content types
and noise levels. It is noteworthy that there is not a huge
performance gap between different threshold values. This
indicates that the proposed method is less sensitive to this
parameter and can accurately capture the edge distribution
of both content and noise in the testing stage.

3.3 Performance comparison

Table 2 compares the proposed EHDSM method with four
NSI BIQA methods, including NIQE [5], ILNIQE [6],
BRISQUE [7], and GM-LOG [8] and seven state-of-the-art
BSCIQA methods including BQMS [2], SIQE [3], NRLT
[12], OSM [13], HRFF [14], PQSC [9], and FVC [15] on
three publicly available datasets SIQAD,SCID, andQACS in
terms of three metrics PLCC, SRCC, and RMSE. The source
codes of these methods, except for OSM, HRFF, and FVC,
are obtained from their author’s websites. To make a fair
comparison, we choose the same sets of training and testing
images and perform the same testing procedure for all com-
pared methods that have source codes. Performance results

Table 2 Comparison of PLCC, SRCC, and RMSE obtained by applying four BIQA methods, seven state-of-the-art BSCIQA, and the proposed
EHDSM method on each of three publicly available datasets (i.e., SIQAD, SCID, and QACS)

Dataset Criteria NIQE ILNIQE BRISQUE GM-LOG BQMS SIQE NRLT OSM HRFF PQSC FVC EHDSM

PLCC 0.3749 0.3854 0.8113 0.7608 0.8419 0.8225 0.9137 0.8306 0.852 0.9101 0.9014 0.9157

SIQAD SRCC 0.3568 0.3212 0.7749 0.7035 0.8348 0.8059 0.9024 0.8007 0.8320 0.8997 0.8915 0.9073

RMSE 13.1520 13.2085 8.2565 9.2530 7.6760 8.1286 5.7879 7.9331 7.4150 5.8885 6.1684 5.7261

PLCC 0.3904 0.4079 0.7696 0.7883 0.7592 0.7208 0.8648 – – 0.9142 0.8681 0.9371

SCID SRCC 0.3712 0.3546 0.7448 0.7619 0.7416 0.7150 0.8454 – – 0.9111 0.8550 0.9367

RMSE 12.9827 12.8425 9.0143 8.6754 9.2087 9.8060 7.0881 – – 5.7450 7.0170 4.9468

PLCC 0.4240 0.2374 0.8421 0.9002 0.8622 0.8821 0.9004 0.7068 – 0.9354 0.9239 0.9442

QACS SRCC 0.3701 0.2603 0.8201 0.8903 0.8557 0.8708 0.8926 0.6804 – 0.9275 0.9198 0.9376

RMSE 1.7091 1.8395 1.0959 0.9656 1.1126 1.0404 0.9594 1.5301 – 0.7804 0.8434 0.7268
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Table 3 Comparison of PLCC, SRCC, and RMSE obtained by applying the proposed EHDSM method and its eight variants on each of three
publicly available datasets (i.e., SIQAD, SCID, and QACS)

Dataset Criteria EHDA EHDB Local SG Global Local+SG Local+global SG+global EHDSM

PLCC 0.9068 0.8948 0.9152 0.5075 0.2440 0.9145 0.9175 0.5980 0.9157

SIQAD SRCC 0.8966 0.8778 0.9057 0.4756 0.2144 0.9055 0.9076 0.5705 0.9073

RMSE 5.9912 6.3701 5.7397 12.2986 13.8178 5.7539 5.6804 11.4196 5.7261

PLCC 0.8475 0.8625 0.8721 0.5135 0.2955 0.9338 0.9265 0.5750 0.9371

SCID SRCC 0.8189 0.8342 0.8462 0.4764 0.2463 0.9330 0.9251 0.5505 0.9367

RMSE 7.4939 7.1490 6.9110 12.1198 13.5104 5.0587 5.3350 11.5781 4.9468

PLCC 0.9469 0.935 0.9430 0.8282 0.3460 0.9433 0.9433 0.8395 0.9442

QACS SRCC 0.9400 0.9269 0.9355 0.8136 0.2813 0.9373 0.9370 0.8246 0.9376

RMSE 0.7113 0.7818 0.7332 1.2338 2.0668 0.7281 0.7335 1.2005 0.7268

of OSM, HRFF, and FVC are copied from their respective
published papers. The best value of each of the three eval-
uation metrics is highlighted in bold. Table 2 clearly shows
that the proposed EHDSMmethod yields the highest overall
PLCC and SRCC values and the lowest overall RMSE val-
ues on all three datasets. It also significantly outperforms the
othermethods on theSCIDdataset that contains chrominance
distortions (e.g., color saturation change and color quantiza-
tion with dithering) since it is the only method that extracts
semi-global and global chrominance features to quantify and
characterize the chrominance information of the distorted
SCI. In addition, the top four BSCIQA methods, namely
EHDSM, PQSC, NRLT, and FVC, outperform all four NSI
BIQA methods on three SCI datasets. All BSCIQA meth-
ods outperform two NSI BIQA methods, namely NIQE and
ILNIQE, on three SCI datasets.

Table 3 lists the scores of three metrics PLCC, SRCC,
and RMSE when employing eight variants of the proposed
EHDSMmethod, namely EHDA only variant 1, EHDB only
variant 2, local (EHDA+EHDB) only variant 3, semi-global
(SG) only variant 4, global only variant 5, local+semi-global
(local+SG) only variant 6, local+global only variant 7, and
semi-global+global (SG+global) only variant 8, on three pub-
licly available datasets SIQAD, SCID, and QACS. Table 3
shows that content descriptor-based edge histograms captur-
ing edge variations are the most important features in IQA
since both variant 1 (i.e., EHDA only) and variant 2 (i.e.,
EHDB only) achieve high performance for three metrics on
three datasets. Variant 3 (i.e., Local (EHDA+EHDB) only)
outperforms variant 1 and variant 2 on SIQAD and SCID
datasets and outperforms variant 2 on the QACS dataset. In
other words, both EHDA and EHDB features are necessary
and contribute to the superiority of the proposed method. On
the other hand, variant 4 (i.e., SG only), variant 5 (i.e., global
only), and variant 8 (i.e., SG+global only) do not achieve
high performance in terms of three metrics on three datasets
since they only capture chrominance distortions. However,

local+SG only variant 6 (combining local features with SG
features) and local+global only variant 7 (combining local
features with global features) tend to improve the variant 3
(i.e., local only) on all three datasets, especially they lead to
significant improvement over variant 3 on the SCID since
both SG and global features capture chrominance distortions
in images from the SCID dataset. These experimental results
indicate the influence of each feature is significant and all
the local, semi-global, and global features are needed to cor-
rectly evaluate the quality of a distorted SCI. The results in
Table 3 also demonstrate that the best performance on the
SIQAD, SCID, and QACS datasets is achieved by variant
7, the proposed EHDSM method that combines local, semi-
global, and global features, and variant 1, respectively. Since
the SIQAD dataset does not contain any chrominance distor-
tions, combining the semi-global chrominance features with
variant 7 slightly drops the performance. Moreover, variant 1
leads to the best performance on the QACS dataset since this
dataset only includes compression-related distortions, which
degrades the structural information of an image rather than
its statistical moments. Similarly, fusing the semi-global and
global features with the local features slightly decreases the
performance. However, the performance improvement is sig-
nificant on the SCID dataset when fusing all features, which
allows the model to assess the quality of degraded images
under chrominance distortions. As a result, we propose to
utilize all three feature variations to represent the SCIs.

3.4 Performance comparison of distortion types

We conduct a set of performance experiments on SCID,
which contains more SCIs and a wide range of distortions, to
comprehensively analyze the effectiveness of the proposed
EHDSMmethod in terms of PLCC, SRCC, and RMSE under
distortions. Table 4 presents the PLCC, SRCC, and RMSE
values obtained by the proposed EHDSM and five state-of-
the-art peer methods on nine distortions on the SCIs in SCID,
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Table 4 PLCC, SRCC, and
RMSE results of the proposed
method and five peer methods
on distorted SCIs in SCID

Criteria Distortion BQMS SIQE NRLT PQSC FVC EHDSM

GN 0.8395 0.6989 0.9753 0.9611 0.959 0.9691

GB 0.7464 0.8336 0.9264 0.9325 0.967 0.9222

MB 0.7963 0.9325 0.9290 0.9541 0.939 0.9504

CC 0.6733 0.4215 0.7766 0.7605 0.936 0.8651

PLCC JPEG 0.8679 0.6932 0.9366 0.9425 0.93 0.9574

J2K 0.7820 0.8235 0.9392 0.9506 0.927 0.9564

CSC 0.3099 0.2938 0.2695 0.7791 – 0.9492

HEVC-SCC 0.6434 0.6431 0.7857 0.9012 – 0.9220

CQD 0.6512 0.6949 0.8956 0.8512 0.941 0.9182

GN 0.8216 0.6781 0.9626 0.9451 0.953 0.9539

GB 0.6944 0.8120 0.9161 0.9253 0.953 0.9142

MB 0.7633 0.9116 0.9145 0.9386 0.933 0.9323

CC 0.4821 0.3145 0.5969 0.6296 0.930 0.7648

SRCC JPEG 0.8386 0.6527 0.9255 0.9248 0.924 0.9348

J2K 0.7392 0.7801 0.9045 0.9124 0.923 0.9277

CSC -0.1216 −0.1009 −0.0248 0.7602 – 0.9403

HEVC-SCC 0.5283 0.5338 0.7068 0.8740 – 0.9094

CQD 0.6185 0.6515 0.8407 0.8298 0.936 0.8995

GN 6.6764 8.7800 2.7457 3.4321 3.516 3.0325

GB 6.8995 5.7087 3.9077 3.7459 3.011 4.0108

MB 6.4919 3.8802 3.9726 3.2438 4.137 3.3416

CC 6.4058 7.9356 5.5531 5.7286 4.253 4.4064

RMSE JPEG 7.3384 10.6357 5.1646 4.9591 3.86 4.2690

J2K 9.6903 8.9020 5.4034 4.8695 3.752 4.5990

CSC 9.2109 9.2254 9.2347 6.0070 – 3.0655

HEVC-SCC 10.4661 10.3733 8.4252 5.9319 – 5.3055

CQD 9.5168 8.9806 5.5814 6.6143 3.893 5.0076

respectively. Four of the five compared methods, namely
BQMS, SIQE, NRLT, and PQSC, provide their source codes
online so we can run the same experiments with the same
setups to obtain their results under distortions. One of the five
compared methods (i.e., FVC) provides the PLCC, SRCC,
and RMSE values on seven distortions and does not provide
their results on CSC and HEVC-SCC distortions. So we use
“–” to reflect these missing results in Table 4. We highlight
the best- and second-best performance values in bold and
italic, respectively. The results in Table 4 clearly show that
the proposed EHDSM method more precisely assesses the
quality of SCIs under various distortions due to its utiliza-
tion of combined content and chrominance-based features.
Specifically, it overall performs the best under JPEG, J2K,
CSC, and HEVC-SCC distortions and performs the second-
best under GN, MB, CC, and CQD distortions. Compared
with the five BSCIQA methods, EHDSM has superior per-
formance on SCID for eight of nine distortion types (i.e.,
best performance on four distortions and second-best results
on four distortions). It ranks the 4th on SCID for GB distor-

tion mainly because the blurring operation directly affects
the edges of an image. Since the proposed EHDSM method
uses the local edge descriptor to represent an image’s con-
tent, it is challenging to distinguish the degradation on the
image’s content resulted from GB distortion. However, we
still achieve a comparable result on the GB distortion due to
the fusion of multiple complementary features. In summary,
our experimental results clearly demonstrate the generaliz-
ability and stability of the proposedmethod regarding various
distortions.

3.5 Analysis of feature sets

Inspired by PQSC [9], we employ the t-distributed stochas-
tic neighbor embedding (t-SNE) method [51] to validate
the effectiveness of the proposed feature space (i.e., local,
semi-global, and global features) in assessing quality degra-
dations resulting from different distortions. t-SNE is an
algorithm used for dimension reduction. It models each
high-dimensional sample using a two-dimensional or three-
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dimensional point in a way that similar samples are mapped
to similar points close to each other and dissimilar samples
are mapped to distant points. As a result, it is capable of
preserving the global information of the actual feature space
[51] and visualizing the samples using their corresponding
feature maps in the reduced dimension. Here, we employ the
t-SNE method to visually analyze the effectiveness of the
proposed features in two dimensions since it is impossible to
visualize the high-dimensional features of size 230 extracted
by the proposed EHDSM method.

Figures 5, 6, and 7 show two scatter plots on SIQAD,
SCID, and QACS, respectively. The one on the left side is
the t-SNE scatter plot of the extracted quality-aware features
of the proposed EHDSM method in two dimensions colored
by different distortion types. The one on the right side is
the same t-SNE scatter plot shown in leftside, in which data
points are colored by their respective MOSs or DMOSs. In
all six scatter plots, each data point represents an SCI, and
different colors represent distortion types or distortion levels.
The scatter plots on the left side of Figs. 5 through 7 show
that the proposed features are able to cluster the distortions
with similar artifacts. For example, the left scatter plot in
Fig. 5 shows that SCIs from SIQAD, which are distorted by
GN, GB, and MB, are grouped around their corresponding
clusters and are almost separated from other clusters. The
left scatter plot in Fig. 6 shows that the SCIs from SCID,
which are distorted by GN and GB, are grouped around their
corresponding clusters and are almost separated from other
clusters. Since GN and CQD distortions add some noise to
the reference images, the quality-aware features of their dis-
torted SCIs are well separated from others and are grouped
quite close together. Since the remaining distortions (i.e.,
CC, JPEG, J2K, CSC, HEVC-SCC, and LSC) introduce the
same artifacts (e.g., compression and blurring effects), their
distorted SCIs tend to be clustered together in the proposed
feature space. The scatterplots on the right side of Figs. 5
through 7 show that distorted SCI images of almost the same
MOS or DMOS values are grouped together. For example,
red or blue points represent SCI images whose subjective
scores are close to each other. Overall, the efficiency of the
proposed feature sets is clearly demonstrated in the distinc-
tion of both the distortion types and levels.

3.6 Cross-dataset evaluation

Cross-dataset evaluation is commonly used to validate the
generalizability of the proposed method. Considering the
number of images and common distortion types in publicly
available datasets, we select the SIQAD and SCID datasets
as training and testing datasets. Specifically, we train the
proposed and compared peer methods on one dataset and
test their performance over the other dataset. This process is

done with six types of distortion (GN, FB, MB, CC, JPEG,
and J2K) that are common in both datasets.

Table 5 compares experimental results of the cross-dataset
evaluation of five BSCIQAmethods. The column of training
with SIQAD (Table 5a) shows the testing results of each com-
pared method on SCID when it is trained over six selected
distortions of SCIs in SIQAD. The column of training with
SCID (Table 5b) shows the testing results of each compared
method on SIQADwhen it is trained over six selected distor-
tions of SCIs in SCID. The best and second-best results are
highlighted in bold and italic, respectively. Previous studies
[15, 23, 52] report cross-dataset validation of their proposed
methods over the common distortions in two datasets. Here,
we report the cross-dataset validation results of the proposed
EHDSM and four state-of-the-art BSCIQA methods to not
only validate the generalizability of each compared method
but also compare their generalizability.

Based on the experimental results shown in Table 5, we
observe the following: (1) All compared methods achieve
better cross-dataset validation results when they are trained
over six selected distortions of SCIs in SCID. The vast size
and complexity of SCID may make the machine learning
model more generalizable and stable, which leads to better
cross-dataset performance on SIQAD. (2) The cross-dataset
performance of almost all BSCIQA methods is worse than
their in-dataset performance, mainly due to the diverse con-
tents of the SCIs in training and testing datasets. (3) The
NRLT achieves the best cross-dataset performance, and the
proposed EHDSM method achieves the second-best perfor-
mance. The block-based feature extraction strategy of the
proposed method may make the model more dependent on
imagery contents compared with NRLT. However, this could
be tackled by utilizing diverse image contents in the learning
process and increasing the training samples.

3.7 Influence of training sizes

To evaluate the influence of training sizes on the IQA per-
formance, we use five training sizes (i.e., 40%, 50%, 60%,
70%, and 80% of SCIs in SIQAD) to train the corresponding
machine learning model of the proposed EHDSM method
and four state-of-the-art BSCIQA methods and test the per-
formance of these compared methods on the remaining
SCIs in SIQAD. Figure 8 presents the SRCC values of the
five compared methods by training their respective machine
learning models on 392, 490, 588, 686, and 784 SCIs in
SIQAD. It is clear that the performance of all methods
improves when the training size increases. The proposed
EHDSM method, NRLT, and PQSC achieve the top three
SRCC values under each of the five trainings. They also
achieve satisfactory SRCC values of above 0.85 even with a
low training size of 392 images. Both EHDSM and NRLT
become steady with growth in training sizes. For example,
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Fig. 5 t-SNE scatter plots of the proposed feature representation on SIQAD: data points are colored by distortion types (left plot) and DMOS
scores (right plot)

Fig. 6 t-SNE scatter plots of the proposed feature representation on SCID: data points are colored by distortion types (left plot) and MOS scores
(right plot)

Fig. 7 t-SNE scatter plots of the proposed feature representation on QACS: data points are colored by distortion types (left plot) and MOS scores
(right plot)
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Table 5 Cross-dataset
evaluation results of the
proposed and four BSCIQA
methods for SCIs of six types of
distortions in SIQAD and SCID

(a) Training with SIQAD (b) Training with SCID

PLCC SRCC RMSE PLCC SRCC RMSE

BQMS 0.3793 0.3730 12.3448 0.5726 0.5595 12.0440

SIQE 0.3741 0.3649 12.3735 0.3747 0.3850 13.6205

NRLT 0.6226 0.6229 10.4411 0.7851 0.7742 9.0990

PQSC 0.5469 0.5494 11.1700 0.6912 0.6466 10.6160

EHDSM 0.5990 0.5841 10.6834 0.7061 0.6503 10.4023

Fig. 8 SRCC results of the proposed and four BSCIQA methods for
SCIs in SIQAD using different training sizes

SRCC value of NRLT improves 0.79%, and the SRCC value
of EHDSM improves 1.31% when using 588 images (60%
training size) and 784 (80% training size) images to train the
respectivemachine learningmodel. The two properties of the
top three methods, namely satisfactory testing performance
with a small training set and the steadiness with growth in
training size, are attractive in practice due to the lack of SCI
training images.

3.8 Computational time

To evaluate the computational time of the BSCIQA meth-
ods, we apply each method to all distorted SCI images in a
dataset to calculate its average run-time (i.e., divide the total
run-time by the total number of images in the dataset). Fig-
ure 9 compares the average run-timeof the proposedEHDSM
method and four state-of-the-art BSCIQA methods on three
datasets, SIQAD, SCID, and QACS. It clearly shows that our
proposed EHDSM method has the fastest average run-time,
which is a significantly low computational run-time of less
than 2.5 s. Specifically, its run-time is less than one-third of
the run-time of the second-fastest method (i.e., NRLT) on
all three datasets. It is also interesting to note that the aver-
age run-time is not correlated with the feature-length. For
example, the length of the features for each SCI extracted by
the proposed BQMS, SIQE, NRLT, PQSC, and our proposed
EHDSM method is 13, 15, 270, 520, and 230, respectively.

Fig. 9 Comparison of average run-time of the proposed and four
BSCIQA methods on three SCI datasets

Even though BQMS and SIQE have the shortest feature
length, their average run-times are the slowest due to their
complicated computational cost to extract the features. In
summary, the proposed EHDSMmethod is more effective in
terms of prediction accuracy, monotonicity, and consistency
and more efficient in terms of run-time compared to four
recently proposed state-of-the-art BSCIQA methods.

4 Conclusion and future work

We propose a BSCIQA method that extracts edge and
chrominance features in local, semi-global, and global scales
using the EHDSM from a distorted SCI in the YCbCr color
space. Our major contributions are as follows: (1) extracting
quality-aware features at three scales (i.e., local, semi-global,
and global scales) to effectively capture the effects of dif-
ferent distortion types and levels of SCIs; (2) employing
EHDs at local scales to describe the content of an image
to accurately represent the characteristics of SCIs; (3) using
statistical moments at both semi-global and global scales
to effectively quantify the content and color degradations
of a distorted SCI. Experimental results on three common
datasets, including SIQAD, SCID, and QACS, demonstrate
the superiority of the proposed EHDSM method over its
eight variant methods, four NSI BIQA methods, and seven
state-of-the-art BSCIQA methods in terms of three common
metrics (i.e., PLCC, SRCC, and RMSE) under all distortions
and under each specific distortion, visualization of features
in a reduced dimension, cross-dataset evaluation, training
sizes, and the average run-time. The novelty of our proposed
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EHDSM method includes employing EHD to capture the
frequency and directionality of edges at local scales (i.e., in
image patches within each image block) and employing first-
and second-order statisticalmoments to capture chrominance
information at semi-global scales (i.e., in image blocks) and
at global scales (i.e., in the entire image). The integration of
local, semi-global, and global features sufficiently perceives
the quality of SCIs.

Currently, the extracted features are stacked togetherwith-
out any further analysis. Therefore, the performance of the
proposed EHDSM method drops when assessing the qual-
ity of images that are less seen in the training stage. In the
future, we would like to carry out research on investigating
the pre- and post-assessment fusion strategies to distinguish
the best strategy that yields the highest performance. Similar
to our proposed approach, we intend to analyze the possi-
ble combination of features such as addition, multiplication,
concatenation, and weighted fusion, before making the final
quality evaluation (i.e. pre-assessment fusion).Moreover, we
plan to study the effect of fusing the assessed qualities from
the individual feature sets (i.e., post-assessment fusion).

Furthermore, we are interested in exploring more accu-
rate color information descriptors. As screen content images
consist of both pictorial and textural contents, the impact of
color degradation varies on each particular content. Thus, we
plan to devise a new color information descriptor based on
the content of the image.
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