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Visual trackers using deep neural networks have demonstrated favorable performance in object
tracking. However, training a deep classification network using overlapped initial target regions may
lead an overfitted model. To increase the model generalization, we propose an appearance variation
adaptation (AVA) tracker that aligns the feature distributions of target regions over time by learning an
adaptation mask in an adversarial network. The proposed adversarial network consists of a generator
and a discriminator network that compete with each other over optimizing a discriminator loss in
a mini-max optimization problem. Specifically, the discriminator network aims to distinguish recent
target regions from earlier ones by minimizing the discriminator loss, while the generator network
aims to produce an adaptation mask to maximize the discriminator loss. We incorporate a gradient
reverse layer in the adversarial network to solve the aforementioned mini-max optimization in an
end-to-end manner. We compare the performance of the proposed AVA tracker with the most recent
state-of-the-art trackers by doing extensive experiments on OTB50, OTB100, and VOT2016 tracking
benchmarks. Among the compared methods, AVA yields the highest area under curve (AUC) score of
0.712 and the highest average precision score of 0.951 on the OTB50 tracking benchmark. It achieves
the second best AUC score of 0.688 and the best precision score of 0.924 on the OTB100 tracking
benchmark. AVA also achieves the second best expected average overlap (EAO) score of 0.366, the
best failure rate of 0.68, and the second best accuracy of 0.53 on the VOT2016 tracking benchmark.
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1. Introduction

Visual tracking aims to estimate states of a moving object
in a dynamic frame sequence. Numerous methods have been
introduced (Bertinetto, Valmadre, Golodetz, Miksik, & Torr, 2016;
Dai, Wang, Lu, Sun, & Li, 2019; Danelljan, Bhat, Shahbaz Khan, &
Felsberg, 2017; Danelljan, Robinson, Khan, & Felsberg, 2016; Hare
et al,, 2016; Henriques, Caseiro, Martins, & Batista, 2015; Zhang,
Ma, & Sclaroff, 2014) to track targets under various challenges
such as deformation, occlusion, illumination variation, scale vari-
ation, and fast motion. However, developing a robust algorithm
that can handle different challenges still remains unsolved.

Recently, convolutional neural network (CNN) based track-
ers (Li et al, 2019; Nam & Han, 2016; Pu, Song, Ma, Zhang,
& Yang, 2018; Song et al., 2018; Zhang & Peng, 2019; Zhang,
Xu, & Yang, 2018) have shown state-of-the-art performance in
terms of accuracy and robustness. They cast tracking as a deep
binary classification problem and categorize the candidates into
target or background classes. As one of the pioneer works, Wang
and Yeung (2013) propose a multi-layer denoising auto-encoder
network to learn a generic object representation. Various CNNs-
based trackers utilize pretrained neural networks on a large-scale
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classification dataset (Simonyan & Zisserman) to extract deep
features of target candidates. These features are then separately
integrated in correlation filter-based trackers and sparse track-
ers (Henriques et al.,, 2015; Javanmardi, Farzaneh, & Qi, 2020;
Qi et al, 2016; Zhang et al., 2018) to achieve better perfor-
mance. On the other hand, some tracking methods (Nam & Han,
2016; Song et al., 2018) directly use external videos to pretrained
CNNs for the classification purposes. As one of the representa-
tive works, Nam and Han (2016) introduced the MDNet tracker,
which pretrains a discriminative CNN using auxiliary sequences
with tracking ground truths to obtain a generic object repre-
sentation. Various trackers have then been proposed to improve
the performance of MDNet by using a tree structure to manage
multiple target appearance models (Nam, Baek, & Han, 2016),
using adversarial learning to identify the mask that maintains
the most robust features of the target objects over a long tem-
poral span (Song et al.,, 2018), and using reciprocative learning
to exploit visual attention for training deep classifiers (Pu et al.,
2018).

A major drawback of CNN-based trackers is lack of temporal
generalization of their model, which is caused by over-fitting
on the overlapped initial target regions. Therefore, CNN-based
trackers such as MDNet (Nam & Han, 2016) fail to maintain the
similarities between the discriminative features of targets over
time. To increase the generalization of the classification network,
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Fig. 1. Comparison of the proposed AVA tracker with CNN-SVM (Hong, You, Kwak, & Han, 2015b), MDNet (Nam & Han, 2016), and VITAL (Song et al, 2018) on
three OTB100 sequences including Jump (Top), CarScale (Middle), and Skating1 (Bottom).

VITAL tracker (Song et al., 2018) utilizes adversarial learning to
generate a mask that dropouts convolutional features of target
candidates. In each training iteration, VITAL prepares 9 random
masks, where each mask covers one of 9 locations in the 3 x 3
feature map, to learn the optimal mask in a least square optimiza-
tion problem. Therefore, this optimal mask is updated to cover
only one part of local features in each iteration. This can lead to
the loss of the informative local features during training.

In this paper, we propose an appearance variation adapta-
tion (AVA) tracker to not only improve the model generaliza-
tion but also maintain the informative local features. The AVA
tracker aligns the feature distributions of target regions over
time by learning an adaptation mask in an adversarial network.
This adversarial network works with the classification network
to learn robust discriminative features of targets. The proposed
adversarial network consists of a generator and a discriminator
network that compete with each other over optimizing a dis-
criminator loss in a mini-max optimization problem. Specifically,
the discriminator network aims to distinguish recent target re-
gions from earlier ones by minimizing the discriminator loss,
while the generator network aims to produce an adaptation mask
to maximize the discriminator loss. This leads to alignment of
informative features of recent and earlier target regions during
tracking, while maintaining accuracy of the classification network
to distinguish targets and backgrounds. We incorporate a gradient
reverse layer (Ganin & Lempitsky, 2014) in the adversarial net-
work to solve the aforementioned mini-max optimization in an
end-to-end manner. Unlike the VITAL tracker, the learned mask
in AVA incorporates a weighted combination of multiple parts
of target features in each training iteration. The proposed AVA
tracker is evaluated on multiple tracking benchmarks (Kristan
et al., 2016; Wu, Lim, & Yang, 2013, 2015) and achieves a favor-
able performance against state-of-art trackers. Sample qualitative
results are shown in Fig. 1.

The major contributions of the proposed tracker are:

e Employing adversarial learning to improve the model gen-
eralization and learn more robust discriminative features of
target regions over a long time span.

e Designing an adversarial network including both generator
and discriminator networks that compete with each other to
learn an adaptation mask, which aligns feature distributions
of target regions that may undergo various changes.

e Incorporating a gradient reverse layer in the adversarial
network to solve the mini-max optimization problem in an
end-to-end manner.

e Performing extensive experiments on challenging bench-
marks to evaluate the performance of the AVA tracker
against state-of-the-art trackers.

The remainder of this paper is organized as follows: Section 2
presents the proposed AVA tracker method together with its
CNN in detail. Section 3 presents the experimental setup and the
results on OTB50 (Wu et al,, 2013), OTB100 (Wu et al., 2015),
and VOT2016 tracking benchmarks (Kristan et al., 2016). Section 4
draws the conclusion and discuss the future work.

2. Proposed method

In this section, we detail the proposed appearance variation
adaptation (AVA) tracker, which aligns the feature distributions
of target regions over a long time span by learning an adversarial
network (Goodfellow et al., 2014). Fig. 2 shows the network
diagram of the proposed AVA tracker. The feature map extracted
from convolutional layers is fed to the adversarial network to
learn an adaptation mask. The mask highlights the regions with
higher similarities with both recent and earlier target regions.
These aligned features are passed to the classification network
for label prediction (Nam & Han, 2016).
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Fig. 2. The architecture of the proposed AVA tracker. The adversarial network consists of two networks: Generator and Discriminator. These two networks work
hand-in-hand to learn an adaptation mask in a mini-max optimization problem to align the feature distributions of recent and earlier target regions up to the current
frame. The classification network, including the feature extractor and three fully connected layers, is the same as the MDNet tracker (Nam & Han, 2016).

2.1. AVA tracker model

Taking advantage of adversarial learning (Goodfellow et al.,
2014; Schmidhuber, 2020) and domain adaptation (Ganin & Lem-
pitsky, 2014), we adversarially learn an adaptation mask to align
features of recent and earlier target regions to make the AVA
tracker model more generalized. In domain adaptation using an
adversarial network (Ganin & Lempitsky, 2014), the training set
consists of two domains (subsets) coming from different distri-
butions. Images in one domain have classification labels, while
images in the other domain may belong to different classes with-
out labels. Existing domain adaptation methods cast the con-
volutional layers as a generator network and utilize a discrim-
inator network to adapt the feature distributions of both do-
mains. The same domain adaptation concept cannot be directly
adopted in visual tracking due to the following reasons: (1) The
training set exclusively contains object candidates and does not
include two domains coming from different distributions. (2)
The convolutional layers are expensive to learn during online
tracking.

In visual tracking, a target may undergo various changes in a
frame sequence due to in-plane and out-plane rotations, defor-
mation, partial occlusion, and scale variation. However, its iden-
tity remains unchanged even with various appearance changes.
To this end, we can safely assume that recent and earlier target
regions in a sequence come from two domains with different dis-
tributions. Therefore, we propose to utilize adversarial learning,
which adapts the feature distributions of recent and earlier target
regions to maintain the similarities between the discriminative
features of targets over time. Instead of learning convolutional
layers directly during online tracking, we propose to learn an
adaptation mask in a generator network and apply it to the
feature map coming from convolution layers to produce a more
robust feature representation of target candidates over time.

Here we formulate the proposed AVA tracker mathematically.
Suppose that the training set of target regions up to the current
frame is {xj}j’.\':‘], where x; € R"™ is the convolutional features
of the jth target region, N; is the number of target samples up
to the current frame, and m = w x h x d with w, h, and d
respectively being the width, the height, and the depth of the
feature map in the last convolutional layer. Suppose X; is a recent
target region with a distribution of S(x) and x; is an earlier
target region with a distribution of O(x). The goal of the proposed
tracker is to align the feature distributions corresponding to X;
and x; to increase the network generalization. The alignment is
performed by an adaptation mask that is adversarially learned
in the proposed adversarial network, which consists of a gen-
erator network Gy and a discriminator network Ggy. It should be

emphasized that the adaptation mask, which is included in Gy,
responds to the input features since the proposed AVA tracker
model seamlessly integrates both Gy and Gq. These two networks
(Gr and G4) compete with each other over the optimization of the
proposed discriminator loss £4 between X; and X;. Specifically,
the discriminator network G, tries to adjust its parameters wy to
minimize £4, while the generator network G; attempts to learn
its parameters wy to deceive G4 and maximize L4. The aligned
feature map pair (X;, X¢) is then fed to the classification network
G, with its parameters w, to minimize the classification loss £..
Finally, the proposed AVA tracker model is formulated as below:

LW, Wp, Wg) = Lc(+) — ALq()
= Y LlGl(Gy(z)), )

I{1:N}

— 2 Y La(Ga(Gr (%)), vy) )

Je{1:Ne}

where £(-) is the cross-entropy classification loss between target
and background (Nam & Han, 2016), £4(-) is a cross-entropy loss
between the feature maps of recent and earlier target regions,
and X is a hyper-parameter to control the balance between £,
and £g4. In both loss terms, the operator G(-) generates the output
feature map of network G. In £, z, is the feature map of a target
or background candidate, N is the total number of target and
background samples up to the current frame, and y; is the class
label (e.g., target and background). In £4, N; is the number of
target samples up to the current frame, and v; is the binary label
of the jth target region defined as follows:

0
vj = 1

The optimal parameters (W, Wy, W) for the proposed model
in Eq. (1) are learned in the following mini-max optimization
problem (Ganin & Lempitsky, 2014):

X; ~ S(x)

X; ~ O(x) (2)

(We, Wy) = arg min £(We, Wy, W) (3)
Wc,Wf
(Wq) = arg max L(We, Wy, Wq) (4)
Wq

The solution to (3) and (4) can be found by using the following
stochastic updates:

wi = w) — pvedw?) (5)
w T = wl — (VL (W) — AV La(w))) (6)
wy " = wy) — uew)) (7)
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where Vf(x) is the gradient of f with respect to x, u is the
learning rate, and (i) is the iteration number. The only difference
between the update (5)-(7) and stochastic gradient descent (SGD)
update is the —A factor in (6). Without this factor, SGD aims to
make features of target regions over time dissimilar in order to
minimize the discriminator loss. Therefore, —A factor is important
to adjust the weight of generator network, wy, for producing
similar features for recent and earlier target regions. On the
other hand, the weights of the discriminator network, wy, are
adjusted in (7) to discriminate between the features of recent and
earlier target regions. This competition results in achieving the
solution of the mini-max optimization problem in (3) and (4). We
incorporate a gradient reverse layer (Ganin & Lempitsky, 2014) in
the adversarial network to make the updates in (5)-(7) in align
with the updates of the SGD method and find the solution in
an end-to-end manner. In the feed-forward, the gradient reverse
layer is an identity transform, while in the back-propagation, the
gradient reverse layer multiplies the gradient by —A and passes
it to the preceding layer. As shown in Fig. 2, the gradient reverse
layer is inserted between Gy and G4 to make them competing with
each other over optimization of £g.

2.2. Network architecture

As mentioned in Section 2.1, the proposed AVA tracker con-
sists of three networks, whose architectures are presented in
Fig. 2. In this subsection, we provide detailed information about
the dimension of input and output features of each network layer.

The classification network, G., is the main network used
in trackers such as MDNet (Nam & Han, 2016), DAT (Pu et al,,
2018), and VITAL (Song et al., 2018). This network has a simple
architecture that is suitable for visual tracking and has shown
to achieve superior tracking performance in multiple trackers. It
has three convolutional layers as shown in the feature extractor
block in Fig. 2 followed by three fully connected layers. The input
image to the feature extractor block is resized to the dimension
of 107 x 107 x 3 and the output feature map of this block has
the dimension of 3 x 3 x 512. This feature map is vectorized
to a 4608-dimensional array and passed to the fully connected
layers. The output of the first, second, and the third fully con-
nected layers is 512, 512, and 2, respectively. The last 2 output
values correspond to the background and target scores. More
information can be found in Nam and Han (2016).

The generator network, G;, in the proposed AVA tracker
aims to learn an adaptation mask for feature alignment by max-
imizing the discriminator loss £4. This network consists of two
fully connected layers combined with dropout and activation
functions. Specifically, after applying a dropout operation with a
dropout rate of 0.5, the first fully connected layer takes the input
feature vector with the dimension of 4608 and outputs a 256-
dimensional feature vector. The resultant feature vector is then
activated using the ReLU activation function. A similar dropout
operation is performed before the second fully connected layer
to produce a 3 x 3 adaptation mask, which is activated using
the sigmoid activation function. The dimension of the adaptation
mask is the same as the spatial dimension of the output from the
feature extractor block in G.. This mask is multiplied with the fea-
ture map generated from the feature extractor block to highlight
the representation of regions with higher feature similarity.

The discriminator network, G, in the proposed AVA tracker
aims to distinguish recent target regions from earlier target re-
gions by minimizing the discriminator loss £4. This network has
three fully connected layers combined with dropout and acti-
vation functions. The input for the first fully connected layer is
the vectorized aligned features with the dimension of 4608. The
output of the first, second, and third fully connected layers are

512, 512, and 1, respectively. The output of the first and second
fully connected layers are ReLU activated and the output of the
third fully connected layer is sigmoid activated. The output value
from the last fully connected layer is a binary prediction value
for recent and earlier target regions, which is further used to
optimize the cross-entropy loss (i.e., £4) in the aforementioned
mini-max optimization problem.

2.3. Online AVA tracking

In this subsection, we present detailed information regarding
initializing the tracker, obtaining the tracking result for each
frame, updating the model, and setting parameters to run the AVA
tracker on a sequence.

Model Initialization: Following the initial parameters set in
the MDNet tracker (Nam & Han, 2016), we pre-train the classifi-
cation network G, on auxiliary frame sequences. At the first frame
of each testing sequence, we load the pre-trained model of G,
freeze the convolutional layer parameters, and fine-tune the pa-
rameters of the fully connected layers (Nam & Han, 2016). Partic-
ularly, we randomly draw target and background samples around
the initial location of the target region and re-train the fully con-
nected layers of G, to be adapted to the current frame sequence.
However, we do not perform any training on the adversarial
network for the first frame in the sequence.

Tracking: We produce n; number of samples around the target
identified in the previous frame. These candidates are passed
through the classification network G.. The candidate that yields
the highest target score is considered as the tracking result in the
current frame. The adversarial network (i.e., G and Gy) is disabled
in this testing step (Cao, Ma, Long, & Wang, 2018; Song et al.,,
2018).

Model Update: The model is automatically updated every
other 10 frames. In order to capture the latest appearance vari-
ations of targets over time, we update the classification network
G, the generator network Gy, and the discriminator network G4 in
the adversarial network in an end-to-end manner. The adversarial
network attempts to align feature distributions of both recent and
earlier target regions. When a tracking result has a negative target
score, we update the classification network G. using the tracking
results up to the current frame. It should be noted that the
adversarial network is not updated to avoid error propagation.

Parameters Setup: The following parameter settings are used
to run the proposed AVA tracker on each frame sequence. ng
target candidates are generated similar to MDNet tracker, where
ng = 256. We use the same parameters for MDNet to pre-
train G, since they have shown to be effective to achieve good
tracking performance. The parameters for the adversarial net-
work are empirically determined to be optimal to achieve good
tracking performance and fast convergence. They are summarized
as follows: The learning rate of Gy is 0.1 and the learning rate of Gg
is 0.0001. These learning rates are empirically determined for fast
convergence. The number of training iterations for the adversarial
network is set to be 50. The momentum and weight decay for
all three networks G, Gy, and Gy are set to be 0.9 and 0.0005,
respectively. The number of target samples in each mini-batch is
64, where 32 of them are randomly selected from recent target
subset and 32 of them are randomly selected from earlier target
subset. The recent target subset is defined as the second half of
the target samples up to the current frame. The earlier target
subset is the first half of the target samples up to the current
frame. The number of background samples in each mini-batch is
96. We set A = 0.01 for the discriminator loss.

3. Experimental results

We perform extensive experiments to evaluate the perfor-
mance of the proposed AVA tracker in terms of accuracy and
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Fig. 3. The overall OPE plots for OTB50 benchmark (Wu et al., 2013).

robustness. We compare the AVA tracker with state-of-the-art
trackers on OTB50 (Wu et al., 2013), OTB100 (Wu et al., 2015),
and VOT2016 (Kristan et al., 2016) tracking benchmarks. For
OTB experiments, we pre-train the network using 58 VOT2016
sequences, which do not include the common sequences in the
OTB100 dataset. For VOT experiments, we pre-train the network
using 89 OTB100 sequences, which do not include the com-
mon sequences in the VOT2016 dataset. We implement the AVA
tracker in Python with PyTorch deep learning framework on a
machine with a 3.60 GHz CPU, 32 GB RAM, and a 1080Ti 11GB
Nvidia GPU.

3.1. Evaluation metrics

We follow standard protocols introduced in popular tracking
benchmarks (Kristan et al., 2016; Wu et al., 2013, 2015) to com-
pare the performance of different trackers. For OTB50 and OTB100
datasets, we perform one pass evaluation (OPE) experiments and
display success and precision plots. OPE is conventionally used
to evaluate trackers by initializing them using the ground truth
location in the first frame. Success plots display success rates at
different overlap thresholds for the bounding box overlap ratio.
Precision plots display precision rates at different error thresholds
for the center location error. To rank trackers using success plots,
we calculate the area under curve (AUC) score for each compared
tracker on all image sequences. To rank trackers using precision
plots, we calculate the average precision score for each compared
tracker on all image sequences at the location error threshold of
20 pixels (Wu et al., 2013, 2015). For the VOT2016 dataset (Kris-
tan et al, 2016), we use accuracy, failure rate, and expected
average overlap (EAO) to evaluate the tracker’s performance. Ac-
curacy is the average of overlap ratios between ground-truth and
detected bounding boxes. Failure rate is a robustness measure
and computed as the average of the number of times that trackers
fail. EAO measures the expected no-reset overlap of a tracker
run on a short-term sequence and combines the raw values of
accuracy and failure per frame in a principled manner.

3.2. Experimental results on OTB50

This benchmark consists of 50 annotated sequences, where 49
sequences have one annotated target and one sequence (jogging)
has two annotated targets. We compare AVA with 29 baseline
trackers in Wu et al. (2013), and 25 recent trackers including
DSST (Danelljan, Hager, Khan, & Felsberg, 2014), KCF (Henriques
et al,, 2015), TGPR (Gao, Ling, Hu, & Xing, 2014), MEEM (Zhang
et al., 2014), MUSTer (Hong et al., 2015), LCT (Ma, Yang, Zhang, &
Yang, 2015), RSST (Zhang et al., 2018), SRDCF (Danelljan, Hager,

Shahbaz Khan, & Felsberg, 2015a), DeepSRDCF (Danelljan, Hager,
Shahbaz Khan, & Felsberg, 2015b), SiamFC (Bertinetto, Valmadre,
Henriques, Vedaldi, & Torr, 2016), ADNet (Yun, Choi, Yoo, Yun,
& Young Choi, 2017), CFNet (Valmadre, Bertinetto, Henriques,
Vedaldi, & Torr, 2017), SGLST (Javanmardi & Qi, 2019),SCT (Choi,
Jin Chang, Jeong, Demiris, & Young Choi, 2016), CNN-SVM (Hong
et al, 2015b), CCOT (Danelljan et al., 2016), ECO (Danelljan
et al, 2017), MDNet (Nam & Han, 2016), VITAL (Song et al.,
2018), CREST (Song et al, 2017), TRACA (Choi et al., 2018),
SiamRPN (Li, Yan, Wu, Zhu, & Hu, 2018), STAPLE (Bertinetto,
Valmadre, Golodetz, et al., 2016), CNT (Zhang, Liu, Wu, & Yang,
2016), and HDT (Qi et al., 2016). Adopting the protocol proposed
in Wu et al. (2013), we use the same parameters for all sequences
to obtain OPE results.

We present the overall OPE success and precision plots in
Fig. 3. We include the top 10 of the 55 compared trackers in
each plot to avoid clutter and increase the readability. The value
within the parenthesis alongside each legend of success plots
is the AUC score for its corresponding tracker. Similarly, the
value within the parenthesis alongside each legend of precision
plots is the precision score for its corresponding tracker. Fig. 3
clearly demonstrates that the proposed AVA tracker achieves
the best tracking performance with the highest AUC score of
0.712 and the highest precision score of 0.951 when comparing
with 55 state-of-the-art trackers. Among the 29 baseline trackers
employed in Wu et al. (2013), SCM (Zhong, Lu, & Yang, 2012)
achieves the best performance with an AUC score of 0.499 and a
precision score of 0.649. The proposed AVA tracker significantly
outperforms SCM by 42.69% and 46.53% in terms of AUC and
precision scores, respectively. It also improves AUC scores of the
top 9 trackers among the 25 additional recent trackers, namely,
MUSTer, TRACA, SiamRPN, ADNet, CCOT, CREST, MDNet, ECO,
and VITAL by 11.08%, 9.20%, 8.21%, 8.04%, 5.95%, 5.79%, 0.56%,
0.42%, 0.28%, respectively. It outperforms precision scores of the
top 9 trackers among the 25 additional recent trackers, namely,
SiamRPN, HDT, TRACA, CCOT, ADNet, CREST, ECO, MDNet, and
VITAL by 7.58%, 6.97%, 5.90%, 5.78%, 5.32%, 4.74%, 2.26%, 0.32%,
and 0.11%, respectively.

3.3. Experimental results on OTB100

OTB100 (Wu et al.,, 2015) extends OTB50 (Wu et al., 2013)
by adding 48 additional annotated sequences. Two sequences,
jogging and Skating, have two annotated targets. The rest of the
sequences have one annotated target. Each of 100 sequences is
also labeled with attributes specifying the presence of different
challenges including illumination variation (IV), scale variation
(SV), occlusion (OCC), deformation (DEF), motion blur (MB), fast
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Fig. 4. The overall OPE plots for OTB100 benchmark (Wu et al., 2015).

motion (FM), in-plane rotation (IPR), out-of-plane rotation (OPR),
out-of-view (OV), background clutter (BC), and low resolution
(LR). The sequences are categorized based on the attributes and
11 challenge subsets are generated. These subsets are utilized
to evaluate the performance of trackers in different challenge
categories.

We evaluate the performance of the proposed AVA tracker
against the same state-of-the-arts trackers presented in the
OTB50 experiment. The MUSTer and CNT tracker are excluded
from this experiment since they do not have any published results
on OTB100. Similar to the experiments on OTB50, we follow the
protocol proposed in Wu et al. (2013, 2015) and use the same
parameters on all the sequences to obtain OPE results. To avoid
clutter and increase the readability, we present the overall OPE
success and precision plots for the top 10 of the 53 compared
trackers in Fig. 4. Each tracker’s AUC and precision scores are
shown inside their corresponding parenthesis in the success and
precision plots, respectively. It clearly shows that the proposed
AVA tracker achieves a favorable performance against state-of-
the-art trackers in terms of both AUC and precision scores. Among
the 29 baseline trackers, Struck (Hare et al.,, 2016) is the best
tracker yielding an AUC score of 0.463 and a precision score of
0.640. The proposed AVA tracker outperforms Struck by 48.60%
in AUC score and 44.38% in precision score. When comparing
with the 23 additional recent trackers, the proposed AVA tracker
achieves the second highest AUC score of 0.688 and the highest
precision score of 0.924. ECO achieves the best AUC score of 0.691,
which improves the AUC score of AVA by 0.44%. Specifically, AVA
improves the AUC scores of TRACA, CREST, DeepSRDCF, SiamRPN,
ADNet, CCOT, MDNet, and VITAL by 14.10%, 10.26%, 8.18%, 7.84%,
6.34%, 2.53%, 1.47%, and 0.88%, respectively. It also outperforms
CREST, HDT, DeepSRDCF, SiamRPN, ADNet, CCOT, MDNet, ECO,
and VITAL in terms of precision score by 10.13%, 8.96%, 8.58%,
8.32%, 5.00%, 2.90%, 1.65%, 1.54%, and 0.76%, respectively.

In Fig. 5, we present success plots of the top 10 trackers for 8
challenge subsets containing large appearance changes of target
regions. The number of sequences in each specific subset is shown
in the parenthesis at the top of its plot. The AUC scores are shown
in the parenthesis alongside the legend of the tracker. The results
of the other trackers can be found in Wu et al. (2015).

It is clear from Fig. 5 that the proposed AVA tracker success-
fully handles significant appearance variations of targets due to
deformation, scale variation, in-plate rotations, out-plane rota-
tions and occlusions. It achieves the best performance in 5 of
these 8 challenge subsets such as DEF, IPR, OPR, LR, and SV and
achieves the third best performance in the remaining 3 challenge
subsets. Compared to the base model MDNet, AVA achieves the
best AUC scores for all the aforementioned challenge subsets. This

Table 1
Comparison of the state-of-the-art trackers in terms of EAO, failure rate, and
accuracy on the VOT2016 dataset.

CccoT ECO Staple MDNet VITAL AVA
EAO 0.329 0.374 0.294 0.257 0.322 0.366
Failure rate 0.85 0.72 1.35 1.20 0.98 0.68
Accuracy 0.52 0.54 0.54 0.53 0.54 0.53

mainly due to the adaptation mask learned in the generator and
discriminator network. This adaptation mask highlights different
variations of target over time. In addition, it aligns the discrimi-
native features of target candidates to increase their similarities
during frame sequences, while simultaneously maintaining their
distinctive properties from the background. Compared to the
improved base model VITAL, AVA tracker achieves better perfor-
mance in all challenge subsets except for the OV subset. This is
mainly due to the incorporation of a weighted combination of
different parts of target features in each training iteration. Such
an incorporation increases the temporal generalization capability
of the model and therefore avoids the loss of informative local
features over a long temporal span.

3.4. Experimental results on VOT2016

We conduct supervised evaluation on 60 VOT2016 sequences
(Kristan et al., 2016). Based on the VOT challenge protocol, the
target is re-initialized using the ground-truth whenever a tracker
fails. A tracker is considered as failed in a frame, when the
overlap ratio of the tracking result and the ground-truth is zero.
The re-initialization happens 5 frames after the failure and the
performance is re-evaluated after 10 frames to avoid the bias.

Table 1 compares the proposed AVA tracker with the baseline
tracker Staple and the top 4 trackers (ECO, VITAL, MDNet, and
CCOT) in OTB100 in terms of accuracy, failure rate, and EAO.
Values in red indicate the best performance and values in blue
indicate the second best performance. It shows that the proposed
AVA tracker obtains a comparable EAO value (e.g., 0.366) with
ECO and stands as the second best tracker in terms of EAO. It
achieves the best robustness performance and yields the lowest
failure rate of 0.68 among the compared trackers. It achieves the
second best accuracy of 0.53, which is comparable to the best
accuracy of 0.54 tied by ECO, Staple, and VITAL. It is interesting
to observe that trackers (e.g., Staple, MDNet, and VITAL) with
a higher failure rate (i.e., more re-initialization) still attain bet-
ter accuracy despite the reduction of the re-initialization bias
for accuracy calculation. As a result, the EAO measure, which
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Fig. 5. OTB100 OPE success plot for DEF, IPR, OPR, OCC, LR, SV, MB, and OV challenge subsets.
simultaneously considers both accuracy and failure rate, is con- AVA tracker outperforms its peers in terms of its EAO score. It

sidered as the best evaluation metric for the VOT2016 benchmark. improves the EAO score of MDNet by 42.41% and the EAO score of
The VOT2016 report (Kristan et al., 2016) states that trackers VITAL by 13.66%. This improvement is mainly due to integration
with the EAO value exceeding a limit of 0.251 are considered as of the adversarial network and alignment of the discriminative
state-of-the-art. Table 1 clearly demonstrates that the proposed features of target candidates over time.
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Table 2
Comparison of the proposed AVA tracker with 11 state-of-the-art trackers on
OTB50, OTB100, and VOT2016 challenging tracking benchmarks. Numbers in red,

blue, indicate the best, the second best, and the third best performance,

respectively. The dash line (-) indicates no reported result.
Trackers Year Publisher OTB50 OTB100 VOT2016

(AUC) (AUC) (EAO)

MDNet 2017 CVPR 0.708 0.678 0.257
ECO 2017 CVPR 0.691 0.374
DAT 2018 NIPS 0.704 0.673 0.320
SiamRPN 2018 CVPR - 0.640 0.340
StructSiam 2018 ECCV 0.640 0.620 0.260
TriSiam 2018 ECCV 0.62 0.59 -
VITAL 2018 CVPR 0.710 0.322
TADT 2019 CVPR 0.680 0.660 0.299
UTD 2019 CVPR - 0.632 0.301
LDES 2019 AAAI 0.677 0.643 -
SiamRPN+ 2019 CVPR 0.670 0.670 0.380
AVA (ours) 2019 NN 0.712 0.688

3.5. Comparison and discussion

We provide comprehensive comparison of the proposed AVA
tracker, eight additional state-of-the-art trackers published in
2018 or 2019, and the top three trackers (ECO, MDNet, and VITAL)
in previous subsections on three tracking benchmarks. The eight
additional trackers include DAT (Pu et al., 2018), SiamRPN (Li
et al.,, 2018), StructSiam (Zhang et al., 2018), TriSiam (Dong &
Shen, 2018), TADT (Li, Ma, Wu, He, & Yang, 2019a), UDT (Wang
et al,, 2019), LDES (Li et al., 2019), and SiamRPN+ (Zhang & Peng,
2019). Table 2 summarizes the performance of these 12 compared
trackers in terms of the AUC score on OTB50 and OTB100 bench-
marks and in terms of the EAO score on the VOT2016 benchmark.
The AUC and EAO scores of the 11 compared trackers are directly
copied from the researchers’ published work. We also include
the year and the publication venue that each compared tracker
was published. To facilitate comparison, we list the trackers in
the chronological order. Table 2 clearly demonstrates that the
proposed AVA tracker achieves the best AUC score of 0.712 on
OTB50, which improves the second best tracker VITAL by 0.28%
and the third best tracker ECO by 0.42%. AVA achieves the second
best AUC score of 0.688 on OTB100 with a 0.44% decrease when
compared to the best tracker ECO and a 0.88% improvement when
compared to the third best tracker VITAL. AVA achieves the third
best EAO score of 0.366 on VOT2016 with a 3.82% decrease when
compared to the best tracker SiamRPN+ and a 2.19% decrease
when compared to the second best tracker ECO. It is clear that
none of these state-of-the art trackers consistently performs the
best on three tracking benchmarks. AVA and ECO are the only
two trackers that rank as the top 3 trackers on three tracking
benchmarks.

We also summarize the performance comparison of the pro-
posed AVA tracker, its model-based peer tracker MDNet (Nam
& Han, 2016), and its adversarial learning-based peer tracker
VITAL (Song et al., 2018) on OTB50, OTB100, and VOT2016 chal-
lenging tracking benchmarks. For the OTB50 benchmark (Fig. 3),
AVA outperforms MDNet by 0.56% and VITAL by 0.28% in the
AUC score and outperforms MDNet by 0.32% and VITAL by 0.11%
in the precision score. For the OTB100 benchmark (Fig. 4), AVA
improves the AUC and precision scores of MDNet by 1.47% and
1.65%, respectively. It improves VITAL by 0.88% in terms of the
AUC score and by 0.76% in terms of the precision score. For the
VOT2016 benchmark (Table 1), AVA attains comparable accuracy
with both MDNet and VITAL. However, it drastically improves

the failure rate of both MDNet and VITAL. This results in an
EAO score improvement of 42.41% and 13.66% over MDNet and
VITAL, respectively. For eight challenge subsets containing large
appearance changes of target regions (Fig. 5), AVA achieves better
AUC scores than both MDNet and VITAL when a target undergoes
deformation, in-plane rotations, out-plane rotations, occlusions,
low resolution, scale variation, and motion blur. It achieves a bet-
ter AUC score than MDNet and a comparable AUC score as VITAL
when target is out of view. Overall, the proposed AVA tracker
uses the model of MDNet as a base network. Unlike MDNet, AVA
aligns the feature distributions of target regions over time by
learning an adaptation mask adversarially. This adaptation mask
increases the model generalization by highlighting the informa-
tive features of target regions over time and dropping out some
non-informative features. Therefore, the more generalized model
tends to attain the similarity between the features distributions
of recent and earlier target regions while maintaining distinctive
properties from the background. The VITAL tracker also learns
a mask during tracking. However, it prepares 9 random masks
where each mask covers one of 9 locations in the 3 x 3 feature
map in each training iteration and learns an optimal mask in a
least square optimization problem. Therefore, this optimal mask
is updated to cover only one part of local features in each iter-
ation, which leads to the loss of the informative local features
during training. Unlike the optimal mask learned in VITAL, the
adaptation mask learned in AVA increases the temporal general-
ization capability and avoids the loss of informative local features
over time by incorporating a weighted combination of multiple
parts of target features in each training iteration via a gradient
reverse layer.

All CNN-based trackers aim to construct a model to classify the
candidates in each frame as a target or a background. They update
the model during tracking to keep track of the latest changes of
target regions. However, one major shortcoming is that the model
may overfit to the initial target appearances, which leads to the
failure to discriminate the similarity of the current target with
its tracked targets in earlier frames when a target appearance
has a drastic change. The proposed AVA tracker aims to address
this shortcoming using adversarial learning. Our extensive ex-
perimental results show that the AVA tracker outperforms most
state-of-the-art trackers in various challenges (e.g., occlusion, fast
motion, scale variation, rotations, etc.) for OTB and VOT bench-
marks. However, like all other trackers, its performance decreases
for the most challenging sequences such as soccer, bird1, fenando,
rabbit where a target suffers from heavy occlusion, skiing, trans,
motorRolling, matrix where a target’s scale changes with a fast
rate, and matrix, iroman, gymnastics where a target’s motion rate
is high. To the best of our knowledge, none of the existing trackers
is able to handle all the severe challenges that lead to significant
appearance changes of the tracked targets. Designing a tracker
that is able to produce a model to discriminate target regions
from background in all frames of challenging sequences is still
an active and open computer vision task.

4. Conclusions and future work

We propose an appearance variation adaptation (AVA) tracker
that is capable of handling the significant appearance variations
of targets. Our contributions are: (1) Aligning feature distribu-
tions of target regions over a long time span by adversarially
learning an adaptation mask. This adaptation mask is applied
on the discriminative features of target regions to increase the
generalization of the classification network. (2) Designing an
adversarial network, which consists of a generator network and
a discriminator network competing with each other over opti-
mization of a discriminator loss between recent and earlier target
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regions. The discriminator network aims to distinguish recent
target regions from earlier ones by minimizing the discriminator
loss, while the generator network aims to produce an adapta-
tion mask to maximize the discriminator loss. (3) Incorporating
the adversarial network with the classification network to align
informative features of recent and earlier target regions during
tracking, while maintaining the network classification accuracy
to distinguish targets and backgrounds. We add a gradient re-
verse layer to solve the aforementioned mini-max optimization
in an end-to-end manner. Our extensive experiments on OTB and
VOT challenge benchmarks show that the proposed AVA tracker
achieves favorable performance against state-of-the-arts trackers.

In the future, we plan to use worst-case target appearance
changes in auxiliary frame sequences to train a model in an ad-
versarial manner before tracking takes place. We will update the
model during tracking to be fine-tuned with the current target.
Furthermore, we will investigate adversarial dropout (Park, Park,
Shin, & Moon, 2018) in visual tracking and incorporate it on the
channels of the feature map to keep the informative features and
achieve better model generalization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., & Torr, P. H. (2016). Staple:
Complementary learners for real-time tracking. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp. 1401-1409).

Bertinetto, L., Valmadore, ]., Henriques, J. F., Vedaldi, A., & Torr, P. H. (2016). Fully-
convolutional siamese networks for object tracking. In European conference
on computer vision (pp. 850-865). Springer.

Cao, Z., Ma, L, Long, M., & Wang, J. (2018). Partial adversarial domain adaptation.
In Proceedings of the European conference on computer vision (pp. 135-150).

Choi, J., Jin Chang, H., Fischer, T. Yun, S. Lee, K, Jeong, ], et al. (2018).
Context-aware deep feature compression for high-speed visual tracking. In
Proceedings of the IEEE conference on computer vision and pattern recognition
(pp. 479-488).

Choi, J., Jin Chang, H., Jeong, J., Demiris, Y., & Young Choi, J. (2016). Visual
tracking using attention-modulated disintegration and integration. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition
(pp. 4321-4330).

Dai, K., Wang, D., Lu, H,, Sun, C, & Li, J. (2019). Visual tracking via adaptive
spatially-regularized correlation filters. In Proceedings of the IEEE conference
on computer vision and pattern recognition (pp. 4670-4679).

Danelljan, M., Bhat, G., Shahbaz Khan, F., & Felsberg, M. (2017). Eco: Efficient
convolution operators for tracking. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 6638-6646).

Danelljan, M., Hdger, G., Khan, F., & Felsberg, M. (2014). Accurate scale estimation
for robust visual tracking. In British machine vision conference. BMVA Press.

Danelljan, M., Hager, G., Shahbaz Khan, F., & Felsberg, M. (2015a). Learning
spatially regularized correlation filters for visual tracking. In Proceedings of
the IEEE international conference on computer vision (pp. 4310-4318).

Danelljan, M., Hager, G., Shahbaz Khan, F., & Felsberg, M. (2015b). Convolutional
features for correlation filter based visual tracking. In Proceedings of the IEEE
international conference on computer vision workshops (pp. 58-66).

Danelljan, M., Robinson, A., Khan, F. S., & Felsberg, M. (2016). Beyond correlation
filters: Learning continuous convolution operators for visual tracking. In
European conference on computer vision (pp. 472-488). Springer.

Dong, X., & Shen, ]. (2018). Triplet loss in siamese network for object tracking.
In Proceedings of the European conference on computer vision (pp. 459-474).

Ganin, Y. & Lempitsky, V. (2014). Unsupervised domain adaptation by
backpropagation. arXiv preprint arXiv:1409.7495.

Gao, J., Ling, H., Hu, W., & Xing, J. (2014). Transfer learning based visual tracking
with gaussian processes regression. In European conference on computer vision
(pp. 188-203). Springer.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
et al. (2014). Generative adversarial nets. In Advances in neural information
processing systems (pp. 2672-2680).

Hare, S., Golodetz, S., Saffari, A., Vineet, V., Cheng, M.-M., Hicks, S. L., et al. (2016).
Struck: Structured output tracking with kernels. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 38(10), 2096-2109.

Henriques, J. F., Caseiro, R., Martins, P., & Batista, J. (2015). High-speed tracking
with kernelized correlation filters. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 37(3), 583-596.

Hong, Z., Chen, Z., Wang, C., Mei, X., Prokhorov, D., & Tao, D. (2015). Multi-
store tracker (muster): A cognitive psychology inspired approach to object
tracking. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 749-758).

Hong, S., You, T., Kwak, S., & Han, B. (2015). Online tracking by learning dis-
criminative saliency map with convolutional neural network. In International
conference on machine learning (pp. 597-606).

Javanmardi, M., Farzaneh, A. H., & Qi, X. (2020). A robust structured tracker using
local deep features. Electronics, 9(5), 846.

Javanmardi, M., & Qi, X. (2019). Structured group local sparse tracker. IET Image
Processing, 13(8), 1391-1399.

Kristan, M., et al. (2016). The visual object tracking VOT2016 challenge results.
In Computer vision - ECCV 2016 workshops (pp. 777-823). Cham: Springer
International Publishing.

Li, X., Ma, C., Wy, B, He, Z., & Yang, M.-H. (2019). Target-aware deep tracking. In
Proceedings of the IEEE conference on computer vision and pattern recognition
(pp. 1369-1378).

Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., & Yan, J. (2019). Siamrpn++: Evolution
of siamese visual tracking with very deep networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp. 4282-4291).

Li, B, Yan, J., Wu, W,, Zhu, Z., & Hu, X. (2018). High performance visual tracking
with siamese region proposal network. In Proceedings of the IEEE conference
on computer vision and pattern recognition (pp. 8971-8980).

Li, Y., Zhu, J., Hoi, S. C., Song, W., Wang, Z., & Liu, H. (2019). Robust estimation
of similarity transformation for visual object tracking. In Proceedings of the
AAAI conference on artificial intelligence (vol. 33) (pp. 8666-8673).

Ma, C, Yang, X., Zhang, C., & Yang, M.-H. (2015). Long-term correlation track-
ing. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 5388-5396).

Nam, H., Baek, M., & Han, B. (2016). Modeling and propagating cnns in a tree
structure for visual tracking. arXiv preprint arXiv:1608.07242.

Nam, H., & Han, B. (2016). Learning multi-domain convolutional neural networks
for visual tracking. In Proceedings of the IEEE conference on computer vision
and pattern recognition (pp. 4293-4302).

Park, S., Park, ]., Shin, S.-J., & Moon, L-C. (2018). Adversarial dropout for
supervised and semi-supervised learning. In Thirty-second AAAI conference
on artificial intelligence.

Pu, S., Song, Y., Ma, C, Zhang, H., & Yang, M.-H. (2018). Deep attentive track-
ing via reciprocative learning. In Advances in neural information processing
systems (pp. 1931-1941).

Qi, Y., Zhang, S., Qin, L., Yao, H., Huang, Q., Lim, ], et al. (2016). Hedged deep
tracking. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 4303-4311).

Schmidhuber, J. (2020). Generative adversarial networks are special cases of arti-
ficial curiosity (1990) and also closely related to predictability minimization
(1991). Neural Networks.

Simonyan, K., & Zisserman, A. Very deep convolutional networks for large-scale
image recognition, arXiv preprint arXiv:1409.1556.

Song, Y., Ma, C, Gong, L., Zhang, J., Lau, R. W.,, & Yang, M.-H. (2017). Crest:
Convolutional residual learning for visual tracking. In Proceedings of the IEEE
international conference on computer vision (pp. 2555-2564).

Song, Y., Ma, C,, Wu, X, Gong, L., Bao, L., Zuo, W,, et al. (2018). Vital: Visual
tracking via adversarial learning. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 8990-8999).

Valmadre, ]., Bertinetto, L., Henriques, ]., Vedaldi, A, & Torr, P. H. (2017).
End-to-end representation learning for correlation filter based tracking. In
Proceedings of the IEEE conference on computer vision and pattern recognition
(pp. 2805-2813).

Wang, N., Song, Y., Ma, C,, Zhou, W, Liu, W., & Li, H. (2019). Unsupervised deep
tracking. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 1308-1317).

Wang, N., & Yeung, D.-Y. (2013). Learning a deep compact image representation
for visual tracking. In Advances in neural information processing systems
(pp. 809-817).


http://refhub.elsevier.com/S0893-6080(20)30226-4/sb2
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb2
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb2
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb2
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb2
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb8
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb8
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb8
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb11
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb11
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb11
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb11
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb11
http://arxiv.org/abs/1409.7495
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb14
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb14
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb14
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb14
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb14
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb15
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb15
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb15
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb15
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb15
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb16
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb16
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb16
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb16
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb16
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb17
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb17
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb17
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb17
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb17
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb20
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb20
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb20
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb21
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb21
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb21
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb22
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb22
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb22
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb22
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb22
http://arxiv.org/abs/1608.07242
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb33
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb33
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb33
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb33
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb33
http://arxiv.org/abs/1409.1556

M. Javanmardi and X. Qi / Neural Networks 129 (2020) 334-343 343

Wuy, Y., Lim, ], & Yang, M.-H. (2013). Online object tracking: A benchmark. In
Proceedings of the IEEE conference on computer vision and pattern recognition
(pp. 2411-2418).

Wu, Y., Lim, ], & Yang, M.-H. (2015). Object tracking benchmark. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 37(9), 1834-1848.

Yun, S., Choi, J., Yoo, Y., Yun, K, & Young Choi, J. (2017). Action-decision
networks for visual tracking with deep reinforcement learning. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition
(pp. 2711-2720).

Zhang, K., Liu, Q., Wu, Y., & Yang, M.-H. (2016). Robust visual tracking via con-
volutional networks without training. IEEE Transactions on Image Processing,
25(4), 1779-1792.

Zhang, J., Ma, S., & Sclaroff, S. (2014) MEEM: Robust tracking via multiple experts
using entropy minimization. In Proc. of the European conference on computer
vision.

Zhang, Z., & Peng, H. (2019). Deeper and wider siamese networks for real-time
visual tracking. In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 4591-4600).

Zhang, Y., Wang, L, Qi, ], Wang, D., Feng, M, & Lu, H. (2018). Structured
siamese network for real-time visual tracking. In Proceedings of the European
conference on computer vision (pp. 351-366).

Zhang, T., Xu, C, & Yang, M.-H. (2018). Robust structural sparse tracking. IEEE
Transactions on Pattern Analysis and Machine Intelligence.

Zhong, W., Lu, H., & Yang, M.-H. (2012). Robust object tracking via sparsity-
based collaborative model. In Computer vision and pattern recognition, 2012
IEEE conference on (pp. 1838-1845). IEEE.


http://refhub.elsevier.com/S0893-6080(20)30226-4/sb41
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb41
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb41
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb43
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb43
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb43
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb43
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb43
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb47
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb47
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb47
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb48
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb48
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb48
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb48
http://refhub.elsevier.com/S0893-6080(20)30226-4/sb48

	Appearance variation adaptation tracker using adversarial network
	Introduction
	Proposed method
	AVA tracker model
	Network architecture
	Online AVA tracking

	Experimental results
	Evaluation metrics
	Experimental results on OTB50
	Experimental results on OTB100
	Experimental results on VOT2016
	Comparison and discussion

	Conclusions and future work
	Declaration of competing interest
	References


