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Abstract
Image registration is a viable task in the field of computer vision with many applications. When images are captured under
different spectrum conditions, a challenge is imposed on the task of registration. Researchers carefully handcraft a localmodule
insensitive to illumination changes across cross-spectral image pairs to tackle this challenge. We, in this paper, develop an
optimized feature-based approach Single Instance Phase Congruency Feature Extractor (SIPCFE) to tackle the problem of
natural cross-spectral image registration. SIPCFE uses the phase information of an image pair to quickly identify and describe
reliable keypoints that are insensitive to illumination. It then employs a sequence of outlier removal processes to find the
matching feature points accurately and the Direct Linear Transformation to estimate the geometric transformation to align
the image pair. We extensively study the proposed approach for every module in the system to give more insights into the
challenges.We benchmark our proposedmethod and other state-of-the-art feature-basedmethods developed for cross-spectral
imagery on three datasets with various settings and image contents. The comprehensive analysis of cross-spectral registration
results of natural images demonstrates that SIPCFE achieves up to 47.24%, 14.29%, and 12.45% accuracy improvement on
the first, second, and third dataset, respectively, over the second best registration method in the benchmark.

Keywords Cross-spectral registration · Phase congruency · Near infrared · Feature-based image registration

1 Introduction

A cross-spectral image pair is a pair of two correspond-
ing images captured in different imaging configurations
such as different camera exposures, different camera posi-
tions, and different sensors. These different configurations
make the images in one pair not perfectly aligned; hence,
registering them is a challenging task in computer vision
applications. When registering two images, the aim is to find
a geometric transformation between a pair of correspond-
ing images to compensate for the rotation, translation, and
scaling differences. The transformation is then used to spa-
tially align, superimpose, or match the images in a pair.
With two registered images, it is easier to fuse informa-
tion or describe the differences between them. Cross-spectral
image registration has broad applications in remote sensing,
object detection, noise reduction, 3D image reconstruction,
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image fusion, video surveillance, medical image analysis,
and image mosaicking.

In this paper, we focus on registering the RGB spec-
trum and near-infrared (NIR) spectrum image pairs. The
intensity variation presented in this type of cross-spectral
images imposes an additional challenge in the task of regis-
tration. Figure 1 represents a pair of RGB-NIR cross-spectral
images. As illustrated, the viewpoint for the NIR image
shown on the right is slightly moved to the right. This dif-
ference in viewpoint is regarded as a translation between
the pairs. A pair might also have differences in scale or rota-
tion in the viewpoint. Additionally, because different sensors
capture different color spectrums, each corresponding pixel
between two images has a different range of values, which is
regarded as intensity variation in this application. Registra-
tion methods are categorized into two classes, i.e., similarity
measure-based globalmethods and feature-based localmeth-
ods.

Methods relying on similarity measures are mainly built
on global statistical dependencies between images. Mutual
information (MI), which was initially introduced by Maes et
al. [26] and Viola and Wells III [43], is a widely used sim-
ilarity measure capturing the global structure of an image.
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Fig. 1 Illustration of an RGB-NIR cross-spectral image pair

Therefore, MI is not capable of describing local structures
and differentiating local intensity variations. These deficien-
cies compelled researchers to develop optimized MI-based
registration methods to grasp local information. Pluim et al.
[31] address the shortcomings of the original MI by combin-
ing the MI and gradient information to align the locations
with a large gradient magnitude. This new measure also sets
the orientation of the gradient at those locations to be sim-
ilar. Rueckert et al. [37] develop a voxel similarity measure
based on higher-order MI to address non-rigid registration.
However, some misalignments are still present around the
contours in rigid transformations. Studholme et al. [41] pro-
pose Regional MI (RMI) to utilize an entropy-based MI to
introduce an extra channel to the joint intensity histogram.
This approach shows robustness toward local contrast vari-
ations in medical images. Loeckx et al. [23] introduce
conditional MI (CMI) to incorporate both intensity and spa-
tial information of the image to be registered. However, the
uncertainty of spatial distribution affects the performance of
the method. Rivaz et al. [34] propose a self-similarity α-MI
(SeSaMI) method using the gradient information to make
it invariant to rotation and local affine intensity distortions.
Although these proposed approaches inject some form of
local representation in a global-based method, they are com-
putationally complex, sensitive to noise, and time-consuming
[16]. Ikena et al. [18] address the runtime issue using CUDA
GPU programming, which needs special hardware and can-
not be ported to all platforms.MI-based approaches [32] have
been developed and optimized for medical images, which
mostly are in grayscale. Therefore, they cannot handle natu-
ral images with richer details and higher intensity variation.

Locally solving the problem of cross-spectral registra-
tion has been tackled mostly with feature-based approaches.
An end-to-end feature-based method finds a correspondence
between the matching keypoints and estimates a transfor-
mation from one spectrum to another. It usually consists of
three modules, namely keypoint extraction, feature extrac-
tion, and outlier removal. Firmenichy et al. [12] use classic
keypoint detectors such as Harris corner detector [14] and
a Gradient Direction Invariant version of Scale-Invariant
Feature Transform (GDISIFT) to extract and match key-
points between RGB and NIR images. Hrkac et al. [17]

use SUSAN and Harris corner detectors [14,40] and the
Hausdorff distance to find the corresponding points. Han
et al. [13] design a hybrid approach using both straight
lines derived from edge pixels and keypoints as features
to register IR and RGB images. They estimate an initial
global transformation based on the straight lines and then
use it to adapt the transformation on keypoints in small
patches locally. Similarly, Zhao et al. [48] propose a hybrid
approach and combine edges and keypoints extracted by
phase congruency (PC) [21] as features. These features are
further described by a multi-modality Robust Line Segment
Descriptor (MRLSD), and a bidirectional matching method
is utilized to find corresponding points. Qin et al. [33],
inspired by the idea of encoding the gradient orientations
in the image, develop a new descriptor called Histogram of
Collinear Gradient-Enhanced Coding (HCGEC) to register
Long Wave Infrared (LWIR) and RGB images. The Gixel
Array Descriptor (GAD) proposed by Pang and Neumann
[30] introduces the term Gixel to collect edge information
extracted with the canny edge detector around a keypoint
extracted by SURF. Several Gixels in a circular array con-
struct the Gixel descriptor. GADworks well for bothmedical
and natural images, but its running time is not optimized.
Aguilera et al. [2] extract keypoints using the FAST detector
[36] and describe features around themusingLog-GaborHis-
togramDescriptor (LGHD), an extended version of the Edge
Histogram Descriptor (EHD) [1]. Kim et al. [19] develop
a Dense Adaptive Self-Correlation (DASC) descriptor by
taking advantages of an adaptive self-correlation measure
and a randomized receptive field pooling learned by the
linear discriminative learning. The disadvantage of feature-
based methods is that finding repeatable and robust features
between different spectrums and different image content is
often a challenging task.

Other local-based methods [7,27,44], which do not fall
in the category of feature-based approaches, have also been
introduced. However, they are either sensitive to noise or can
only tolerate aminimal amount of noise.Deep learning-based
approaches have also been explored. For example, Large
Deformation Diffeomorphic Metric Mapping (LDDMM)
[46] is utilized to develop a 3D Convolutional Neural Net-
work (CNN) architecture called Quicksilver to register two
un-aligned medical images. LDDMM predicts the deforma-
tion parameters using the predicted initial momenta of the
input. However, Quicksilver is optimized for medical images
represented in 3D voxels. Additionally, deep learning meth-
ods require a sizeable pre-aligned dataset to train a network,
which is not always easy to craft.

This paper proposes a fast, reliable, and robust image
registration method to align the RGB and NIR image pair
under different illumination conditions. We refer to the
proposed method as Single Instance Phase Congruency Fea-
ture Extractor (SIPCFE). The contributions of the proposed
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method are as follows: (1) employing the PC method and
its adaptive noise variant to extract the keypoints that are
invariant to intensity changes; (2) incorporating the interme-
diate results fromkeypoint extraction, namely theLog-Gabor
filter responses, in the feature description step to represent
each keypoint using the histogram of oriented Log-Gabor fil-
ters; (3) designing a sequence of outlier removal processes
to match corresponding keypoints accurately between the
RGB and NIR image pair, which performs well regardless
whether non-rigid or rigid correspondences are present in
the data; and (4) utilizing the Direct Linear Transformation
(DLT), a projective transformation, to estimate the geomet-
ric transformation for registering all the RGB points in the
NIR domain. Finally, we conduct an extensive study of the
image registration results on three sample datasets. Utah
Water Research Laboratory (UWRL) and Computer Vision
Lab at École Polytechnique Fédérale De Lausanne (EPFL)
provide the first and second dataset, respectively. In addition,
we choose a subset of the EPFL dataset to create image pairs
with random rotation differences to evaluate the performance
of the image registration methods under rotations. SIPCFE
is evaluated on the registration results on these three datasets
in terms of the Root Mean Square Error (RMSE). We show
that the proposed method outperforms other state-of-the-art
methods regarding accuracy. SIPCFE is faster on the sec-
ond dataset and has comparable runtime on the first dataset
compared to the second most accurate method. To the best
of our knowledge, there is not a fully comprehensive study
of the registration task in the literature, whereas the primary
focus is on the evaluation of the keypoint extraction and key-
point description. This work is the first attempt to evaluate
an end-to-end registration system from the perspectives of
the performance of critical modules in the system and their
impact on the whole system.

We organize the remainder of the paper as follows. Sec-
tion 2 presents the proposed method. In Sect. 3, we present
the evaluation method and the experimental results on the
chosen datasets. An ablation study is pursued to develop
a comprehensive guideline for future research. Finally, we
deduce conclusions in Sect. 4.

2 Proposed SIPCFEmethod

In our application, we intend to register the RGB image
onto the NIR image. Hence, the NIR and RGB images are
referred to as the reference image (i.e., Ir ) and the moving
image (i.e., Im), respectively. All the pixels in the reference
image (e.g., NIR image) are kept static, and all the pixels
in the moving image (e.g., RGB image) are transformed to
the reference image plane via the geometric transformation
found in the process. The algorithm overview of the proposed

feature-based registration method, SIPCFE, is summarized
in Algorithm 1.

Algorithm 1 The proposed feature-based algorithm
(SIPCFE)
Input: original image pair I = {Im , Ir }, number of scales S, number

of orientations O .
Output: registered image pair I ′ = {I ′

m , Ir }
1: for each Ii in I (i ∈ {m, r}) do
2: for s = 1 to S do
3: for o = 1 to O do
4: Generate a Log-Gabor filter lg f using s and o
5: Compute phase congruency PCi {s, o} by

Ii � lg f

6: end for
7: end for
8: Compute the moment map mi from PCi
9: Extract keypoints P∗

i from mi
10: Extract features fi around each keypoint P∗

i

11: end for
12: Find the pairs of putative matching keypoints (Pm , Pr ) in I using

an exhaustive search method
13: Apply Vector Field Consensus (VFC) on the feature pairs ( fm , fr )

of (Pm , Pr ) to remove outliers and obtain robust matching keypoint
pairs (P ′

m , P ′
r )

14: Find the geometric transformation H based on (P ′
m , P ′

r ) using the
Direct Linear Transformation (DLT) algorithm

15: Transform Im to I ′
m using H

Figure 2 presents the illustrative block diagram of the
proposed image registration method, which consists of five
components including keypoint extraction, keypoint fea-
ture description, keypoint feature matching, transformation
estimation, and image registration. The aims of these five
components are as follows:

– Keypoint extraction: Extracting distinct reliable and
repeatable points in both the reference and the moving
image.

– Keypoint feature description: Representing the keypoints
in a compact but rich feature vector, which captures local
information and is insensitive to intensity variation.

– Keypoint feature matching: Finding the corresponding
matching keypoints between the RGB and NIR images
and removing the outliers.

– Transformation estimation: Finding a geometric relation-
ship between the matching keypoints in the form of a
transformation matrix.

– Image registration: Aligning or superimposing the regis-
tered RGB image onto the NIR image.

In the following subsections, we explain each component
in detail.
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Fig. 2 The illustrative block diagram of the proposed image registration method

2.1 Keypoint extraction

A keypoint is a distinct spatial location representing what
stands out in an image based on local information around
the selected locations such as the corners. Therefore, unlike
global measures, keypoints have to be insensitive to image
rotation, translation, scale change, occlusions, and back-
ground clutter. Conventional keypoint extraction methods
such as Harris [14], MinEigen [39], BRISK [22], HOG [8],
SURF [4], MM-SURF [48], FAST [35] and its variants [36],
and SIFT [24] extract local information based on statistical
measures of the gradient. Gradient-based keypoint detectors
degrade the performance of cross-spectral image registra-
tion when a large intensity variation exists between images.
On the other hand, the phase congruency (PC) operator uses
the local amplitude and phase of a signal at different loca-
tions as intermediate information and then performs principal
moment analysis to extract keypoints. Since the collected
information is highly localized with filter responses invari-
ant to intensity changes, PC results in a keypoint extraction
module, which is robust to varying illuminations usually pre-
senting in image pairs captured in cross-spectral applications.

2.1.1 Computing PC for a 1D signal

Kovesi suggests PC [20,21] as a phase-based feature extrac-
tion, which is invariant to intensity changes between images
and consequently makes it a dimensionless operator. This
characteristic makes this feature detector robust in extracting
features in cross-spectral images. The PC operator utilizes a
Local Energy Model (LEM) [28] to extract features in an
arbitrary image. In the LEM, features are described as signal
locations that are in the most coherence state in the phase
domain. Figure 3 illustrates that all the Fourier components

Fig. 3 Fourier components of a square wave signal, where the solid
wave is the summation of the four dashed waves

are in phase at the step point of a one-dimensional square
wave signal, which is highlighted in the green circular area.

The original PC by Morrone et al. [28] at location x in
a one-dimensional signal is computed as the ratio of local
energy to the sum of Fourier components’ amplitudes at x .
That is:

PC(x) = |E(x)|
∑

n An(x)
(1)

where E(x) is the local energy and An(x) is the amplitude of
the nth Fourier component at location x . Local energy can be
redefined as a function of the cosine of the phase deviation,
namely the difference between nth local phase component at
location x (i.e., φn(x)) and the mean of all local components
at location x . As a result, (1) is rewritten as follows:

PC(x) =
∑

n An

(
cos

(
φn(x) − φn(x)

))

∑
n An(x)

(2)

Kovesi [20] derives a modified local energy measure by
subtracting the magnitude of the sine of the phase deviation
from the original local energy. To further eliminate spurious
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response to noise and the fluctuations around a noisy step, an
estimated noise energy value T is subtracted from the mod-
ified local energy measure before normalizing it by the sum
of the Fourier response amplitudes. A small constant ε (e.g.,
0.0001) is also added to the denominator to prevent the value
from becoming unstable as the term

∑
n An(x) becomes very

small. Finally, to obtain a better-localized response, a fre-
quency spread weighting factor W (x) is applied to control
the contribution of its corresponding modified local energy.
This modified PC measure is as follows:

PC(x) =
∑

n W (x)
⌊
An(x)

(
cos

(
φn(x) − φn(x)

)−| sin(φn(x) − φn(x)
)|

)
−T

⌋

∑
n An(x) + ε

(3)

where the rectifier � � returns the enclosed value as it is if the
value is positive; otherwise, the rectifier returns 0. The new
modified formulation of PC not only provides better local-
ization but also compensates the noise with an empirically
determined optimal value T .

2.1.2 Computing PC for a 2D grayscale image

When computing PC for a 2D grayscale image, researchers
use a bank of Log-Gabor filters with different scales and
orientations to generate the responses of the image. Specif-
ically, the filter response is used to replace the local energy
information E(x) and the magnitude of the filter response is
used to replace the amplitude An(x). In the proposedmethod,
we empirically use 4 scales and 8 orientations to construct
a bank of 32 Log-Gabor filters, which capture enough scale
and orientation information.

In practice, the input image is convolved with a bank of
Log-Gabor filters to obtain their responses (local energy)
and the magnitude of the responses (amplitude). Finally, the
two-dimensional PC at location x in a grayscale image is
calculated by:

PC(x) =
∑

s Wo(x)
⌊
Eo(x) − T

⌋

∑
o
∑

s
Aso(x) + ε

(4)

where Eo(x) represents local energy at orientation o, Aso(x)
represents amplitude of the filter response at location x in
the response image of scale s and orientation o, Wo(x) is
the frequency spread weighting factor at orientation o, and
s and o represent the index of Log-Gabor filters’ scale and
orientation, respectively. For 2DPC,Wo(x) penalizes narrow
frequency distributions at the oth orientation and is defined
by a sigmoidal function:

Wo(x)=
(

1+exp

(

go

(

co − 1

No

( ∑
s Aso(x)

Amax(x) + ε

))))−1

(5)

where co is the cutoff value, go is the gain factor that con-
trols the cutoff sharpness, No is the total number of scales at
orientation o, and Amax(x) is the maximum magnitude at x
in the filters of all scales at all orientations.

2.1.3 Adaptive noise energy estimation

The noise energy value T in (4) is calculated based on the
statistics of the filter response to the images. It is assumed
that the noise is Gaussian; therefore, the response of Log-
Gabor filters to noise forms Rayleigh distribution. By finding
the Rayleigh distribution mode, we can easily calculate the
mean and standard deviation, which can be further used to
compute the noise energy (i.e., T ). By default, the Median
Absolute Deviation (MAD) criterion estimates the Rayleigh
distribution mode, which serves as a simple estimator to esti-
mate the noise statistics of an image with less complicated
noise contamination. However, this estimated Rayleigh dis-
tribution mode does not always lead to accurate noise energy
estimation. To address this issue, we devise amethod to auto-
matically choose an appropriate mode estimator and then
compute a better estimation of T in (4). To this end, we
adopt the idea of a wavelet-based de-noising algorithm [38]
to use the joint statistics of the wavelet coefficients of natural
images for estimating the noise. Specifically, we estimate the
noise variance from the wavelet coefficients using a robust
median estimator [10] by:

σ 2
n = median(|Y |)

0.6745
(6)

whereY represents thewavelet coefficients at three first-level
detail subbands including the horizontal subband LH1, the
vertical subband HL1, and the diagonal subband HH1. Here,
Y = {y1, y2, y3} with y1 being the wavelet coefficients at
LH1, y2 being the wavelet coefficients at HL1, and y3 being
thewavelet coefficients at HH1. | | gets the absolute value for
each coefficient inY .Using all of highest frequency subbands
[5] makes the noise estimation adaptive to different subband
characteristics. In our experiments, we use the ’db2’ from
the Daubechies wavelet family for a faster estimation. We
classify input images into three types of noise severity based
on the σ 2

n value. Table 1 lists the empirically determined
thresholdvalues forσ 2

n to determine the level of noise severity
for an image.

For images with low noise severity, we do not need to
estimate the noise statistics and directly set the noise energy
value T as 0; for images with medium noise severity, we
use the MAD criterion to estimate the Rayleigh distribution
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Table 1 Classifying noise severity in images based on the variance
value

σ 2
n value Noise severity

σ 2
n < 2 Low

2 ≤ σ 2
n < 5.5 Medium

σ 2
n ≥ 5.5 High

Algorithm 2 Estimating the noise energy value T for PC
Input: grayscale image gI .
Output: the estimated noise energy value T .
1: Apply a 1-level ‘db2’ wavelet decomposition on gI
2: Extract the first-level subbands LL1, HL1, LH1, and HH1
3: Estimate the noise variance σ 2

n using (6)
4: if σ 2

n < 2 then T ← 0

5: if 2 ≤ σ 2
n < 5.5 then use Median Absolute Deviation (MAD)

mode estimator to calculate T
6: if σ 2

n ≥ 5.5 then use histogram mode estimator to calculate T

mode; for images with high noise severity, we use the his-
togram of the image to estimate the Rayleigh distribution
mode. The histogram method serves as a more accurate way
of estimating the noise statistics for more complex noise con-
tamination. We summarize our noise estimation method in
Algorithm 2.

2.1.4 Extracting image keypoints

To identify the keypoints in an image, we construct amoment
map in which the larger moments encapsulate the corner
strength information. In other words, the larger the moments,
the higher strength of the corners. To this end, PC proceeds
with a moment analysis as calculated in (7), (8), and (9).

a(x) =
∑

o

(
PCo(x) cos(θo)

)2 (7)

b(x) = 2
∑

o

(
PCo(x) cos(θo)

)×
∑(

PC(θo) sin(θo)
)

(8)

c(x) =
∑

o

(
PCo(x) sin(θo)

)
(9)

where PCo(x) is the phase congruency value at orientation
o, θo is the axis angle of oth orientation, and a(x), b(x), and
c(x) are three kinds of second moments at location x . The
PC operator utilizes these moments to construct the moment
value at location x in a map m (i.e., m(x)):

m(x) = 1

2

(
c(x) + a(x) −

√
b(x)2 + (a(x) − c(x))2

)
(10)

In the proposedmethod,we exploitm to extract the corners
in both RGB and NIR images. Specifically, the 1200 corners
with the most strength (i.e., the largest 1200 values) in the

map are chosen as the keypoints among the candidate corners
for each image in a pair and are passed to the next module.

2.2 Keypoint feature description

We use a descriptor insensitive to illumination changes to
represent features at keypoints due to the nonlinear intensity
variation between the cross-spectral RGB-NIR image pair.
We choose the Log-Gabor Histogram Descriptor (LGHD)
[2], which is a distribution-based descriptor relying on high-
frequency components to describe features around each
keypoint. LGHD is a more robust candidate for our desired
application than other state-of-the-art descriptors such as
SIFT and PCEHD. LGHD uses the Log-Gabor filters in
different scales and orientations to build a histogram as sum-
marized in Algorithm 3.

Algorithm 3 LGHD feature descriptor
Input: grayscale image gI , its keypoints P∗

gI , its filtered phase congru-
ency result PCgI , number of scales S, number of orientations O ,
and patch size M

Output: LGHD features fgI
1: for every keypoint p∗

i in P∗
gI (i ∈ {1, . . . , n}) do

2: Locate a patch Ri of size M around p∗
i

3: Divide Ri into 16 smaller subregions sRi
4: for each sRi, j in sRi ( j ∈ {1, . . . , 16}) do
5: Calculate its corresponding oriented histogram

hi, j at O orientations in PCgI

6: end for
7: Concatenate hi, j in all S scales to obtain a feature

vector fi of size S × O × 16

8: end for
9: Organize { f1, f2, . . . fn} in a set to form LGHD features fgI

Since PC itself uses LGHD, we combine the key-
point extraction and feature description module into a Sin-
gle Instance Phase Congruency Feature Extraction module
(SIPCFE) as one of our contributions. In other words, the
Log-Gabor filter bank responses saved in the previous sec-
tion (e.g., PCgI ), which are the results obtained by lines 1-7
of Algorithm 1 using 4 scales and 8 orientations, are directly
used to extract LGHD features.

We use a patch of a pre-determined size around each
keypoint to compute its histogram of oriented Log-Gabor
filters in PCgI . To this end, we divide each patch into 16
smaller subregions. For each subregion, we compute its cor-
respondingmagnitudes in PCgI and determine the dominant
orientation at each of its locations based on the maximum
magnitude at all orientations. We then concatenate the his-
togram of the dominant orientations in each subregion in
all scales to obtain a feature vector of size (S × O × 16).
We observe that larger patches would allow us to consider
possibly more informative descriptors, but at the same time,
they would be more susceptible to occlusions and slower to
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compute. As a result, we empirically choose the patch size as
50×50 (i.e., M = 50) in our proposed method. At the end of
this step, the RGB image has a set of feature vectors denoted
as fRGB to represent the characteristics of each keypoint and
the NIR image has another set of feature vectors denoted as
fN I R to represent the characteristics of each keypoint.

2.3 Keypoint featurematching

As discussed in the previous section, we represent each key-
point by a feature vector of values. The corresponding feature
points between the RGB-NIR pair are identified using an
exhaustive matching method. Two keypoints match if their
sum of absolute differences in their feature descriptor in all
512 dimensions is less than a certain threshold. This exhaus-
tive matching method ensures that all potentially matching
keypoints are uniquely identified and saved in a set of putative
matching points. This exhaustive method, however, leaves us
with outliers, which need to be removed tomake our transfor-
mation estimation more accurate. Maintaining a robust set of
corresponding points from a putative set of matched points
is an essential step in the registration task. Before estimat-
ing a geometric transformation, one has to make sure that
the estimation is done on a clean set of matched keypoints
without outliers or a set of matched keypoints with a few
outliers. Classic Sample Consensus (SAC) algorithms such
as RANSAC or MSAC are highly sensitive to the proportion
of outliers.

Moreover, they cannot handle non-rigid (non-parametric)
correspondences. For our task, we adopt the idea of VFC
algorithm [25] to represent the matching points by motion
field samples and take advantage of the Expectation Max-
imization (EM) algorithm [9] to detect inliers and remove
outliers. If the observed 2D sets of matched points are
Pm = (xm, ym)T and Pr = (xr , yr )T with Pm representing
the set of keypoints in the moving image and Pr representing
the set of keypoints in the reference image, the motion field
vector for each pair of matched points is:

v = (sn, tn), sn = Pm, tn = Pr − Pm (11)

where sn is the vector’s starting point and tn is the vector’s
terminal point. Next, we define the motion field set as:

S = {(sn, tn) : n ∈ N} (12)

The goal is to fit a mapping field function f so that:

tn = f (sn) (13)

The robust estimation of f is obtained when there are no
outliers present in the data. By assuming a Gaussian noise
with zero mean, an arbitrary uniform standard deviation for

the inliers, and a uniform distribution for the outliers, VFC
employs the EM algorithm to estimate a set of parameters
containing the distribution parameters θ and the mapping
field function f , where a slow-and-smooth [45] prior,which is
generalized to a broad range of phenomena, on f is assumed.
Maximum A Posterior (MAP) then estimates the optimal
solution for θ by minimizing the energy. The EM algorithm
estimates a posterior probability for each vector by updating
the distribution parameters until convergence (i.e., reaching
the desired minimum energy). At each iteration of EM, the
solution for f is obtained via Tikhonov regularization [42] in
a vector-valued Reproducing Kernel Hilbert Space (RKHS)
[3]. The final solution enforces closeness of f to the inliers
and maintains smoothness on the vector field of f . Vectors
with the posterior probability lower than a certain threshold
(e.g., 0.75) are considered to be outliers.

2.4 Transformation estimation

Given a reference image r and a moving image m, the goal
of image registration is to find a transformation function,
H : R

d → R
d , which maps all the pixels in the moving

image to their corresponding pixels in the reference image.
Here, d denotes the dimension of the data, which in our
case is 2D (i.e., the x and y coordinates of matched key-
points). At this step, we aim to find the optimal projective
transformation matrix to map all the matched points in the
moving image to their corresponding matched points in the
reference image. The projective transformation is suitable for
our application since it does not preserve parallelism, length,
and angle compared to the affine transformation. Specifically,
we utilize the DLT algorithm [15] to estimate the projective
transformation H. We also constrain DLT to require at least
8 matched points instead of 4 matched points to increase its
robustness to estimate H. Hence, the task of registration is
tagged as a failure if the keypoint feature matching method
cannot identify at least 8 robust matched points. We denote
the 2D inlier set of matched keypoints in the moving image
as Pm = (xm, ym, 1)T , wherem = 1, 2, . . . , N , and N is the
number of matched points with N ≥ 8. Similarly, we denote
the 2D inlier set of matched keypoints in the reference NIR
image as Pr = (xr , yr , 1)T , where r = 1, 2, . . . , N . The
transformation equation is denoted as Pr = HPm. The right-
hand side of this equation is written as:

HPm =
⎡

⎣
h1TPm

h2TPm

h3TPm

⎤

⎦ (14)

where h jT is the j-th row of the matrix H. If we rewrite the
equation Pr = HPm in the form of the vector cross product
as Pr × HPm = 0, then:

123



10 Page 8 of 18 A. H. Farzaneh, X. Qi

Pr × HPm =
⎡

⎣
yrh3T xm − h2T xm
h1T xm − xrh3T xm
xrh2T xm − yrh1T xm

⎤

⎦ (15)

Since h jT xm = xTmh
j for j = 1, 2, 3, we have three sets of

equations in the form:

⎡

⎣
0T −xTm yr xTm
xTm 0T −xr xTm

−yr xTm xr xTm 0T

⎤

⎦ ×
⎡

⎣
h1

h2

h3

⎤

⎦ = 0 (16)

which can be rewritten in the form of Aih = 0. To solve
this, we need the first two rows since they are the only two
independent linear equations. The n 2 × 9 matrices Ai are
assembled into a single 2n×9 matrixA. The Singular Value
Decomposition (SVD) of A is obtained so that A = UDVT .
If h denotes the last column of V, it is a 9-value vector con-
sisting of the entries of the matrix H. In other words,

h =
⎡

⎣
h1

h2

h3

⎤

⎦ , H =
⎡

⎣
h1 h2 h3
h4 h5 h6
h7 h8 h9

⎤

⎦ (17)

Using all pairs of the matched points between the RGB and
NIR images, DLT estimates all 9 elements of the H matrix,
which is further applied to all the pixels in the RGB image
to register the RGB image onto the NIR image.

3 Experimental results

In this section, we discuss our experiments and the results
to further evaluate the proposed image registration method
and the state-of-the-art image registration methods. We test

these image registration methods on three datasets. The first
dataset contains 12 pairs of collected RGB-NIR remote sens-
ing images with a resolution of 563 × 451 pixels, courtesy
of Utah Water Research Laboratory (UWRL). This dataset
is not aligned. To evaluate the registration methods, we have
manually labeled at least 10 corresponding points between
the RGB image and its NIR pair. Some sample images from
this dataset are shown in Fig. 4.

The Computer Vision Lab at EPFL provides the second
dataset [6], which includes 477 pairs of RGB-NIR images.
The image pairs are categorized into nine different types of
scenes: country, field, forest, indoor,mountain, old building,
street, urban, and water. Each category contains at least 50
image pairs. To facilitate the evaluation, researchers have
already aligned the EPFL dataset roughly for each pair. We
show sample pairs from this dataset in Fig. 5.

We use the second dataset to create a subset of the EPFL
dataset with rotated reference images (i.e., NIR images).
Specifically, we randomly choose five images from each of
nine categories of the EPFL dataset and apply random rota-
tions in the angle range [1◦, 45◦] to the NIR images. Here,
large angles are not employedbecause they are not commonly
used in practice.

We have compared the proposed approach with different
combinations of keypoint extractors and keypoint descriptors
(denoted as keypoint extractor + cross-spectral descriptor),
which are promised to deliver notable results under illumina-
tion varied applications. Two powerful keypoint extractors,
namely, SIFT and PC, have been chosen for our benchmark.
We describe the features at each keypoint using the four most
commonly used cross-spectral descriptors such as LGHD,
SIFT, Eight Local Directional Patterns (ELDP) [11], and
Phase Congruency and Edge Histogram Descriptor (PCE-
HD) [29]. Keypoint extractors such as FAST and MinEigen

Fig. 4 Sample RGB-NIR image pairs from the UWRL dataset (top row: RGB images; bottom row: NIR images)
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Fig. 5 Sample RGB-NIR image pairs from the EPFL dataset (top row: RGB images; bottom row: NIR images)

are powerful ones for broader types of images. However,
they do not provide a sufficient number of robust and reli-
able keypoints on the three datasets. Hence, we exclude
these two methods from our experiments. In addition, we
extract the SIFT descriptors around each keypoint identified
by SIFT since they can be easily extracted from the SIFT
keypoint extraction process. However, extracting the SIFT
descriptors for other keypoint extractors is difficult and we
could not find any reliable online source code to do this. We
use the following naming conventions {keypoint extractor
+ cross-spectral descriptors} to build the benchmark for six
state-of-the-art image registration methods including {SIFT
+ LGHD}, {SIFT + SIFT}, {SIFT + ELDP}, {SIFT +
PCEHD}, {PC + ELDP}, {PC + PCEHD}, and the pro-
posed SIPCFE (i.e., an efficient version of {PC+LGHD}). It
should be noted that the six state-of-the-art image registration
methods use the same sequence of outlier removal process as
proposed for SIPCFE (i.e., the exhaustive matching method
followed by VFC) to find the reliably matched keypoints.
The registration method {PC + SIFT} is not included in the
comparison. We run our benchmarks on a 3.4GHz Intel Core
i7 machine with 16GBs of RAM.

3.1 Evaluationmeasure

Let H = (Hx ,Hy) denote the transformation function to
register the RGB image onto the NIR image, where Hx is the
transformation at the x coordinate andHy is the transforma-
tion at the y coordinate. Then, any point pm = (xm, ym) in
the moving image (RGB) has a relationship with its corre-
sponding point pr = (xr , yr ) in the reference image (NIR)
as follows:

pr = Hpm (18)

Since the images are in different spectrums, we cannot use
the intensity of registered points to evaluate the registration
performance. Instead, we use the RMSE to evaluate the accu-
racy of the estimated transformationH. Since the image pairs
in the EPFL dataset are pre-aligned, we useH to register the

inlier keypoints extracted from the RGB image to be aligned
with their matching points in the NIR image. We then com-
pute RMSE based on the number of pixels that the registered
points shift away from their original locations in the NIR
image. Specifically, if Pi is the set of matched points in the
reference image and the set of their corresponding matched
points in the moving image after employing the transforma-
tion is denoted by Pj = HPi, RMSE is calculated by:

RMSE =
√

||Pi − Pj||2 =
√
√
√
√ 1

N

N∑

i=1

||pri − Hpmi
||2 (19)

where N is the number of matched points and i is the index
of a pair of matched points in both the reference image and
themoving image. Smaller values of RMSE represent amore
accurate transformation from RGB to NIR. In literature, an
RMSE of below 5 pixels is usually considered to be a fair
error [47].

3.2 Results on the UWRL dataset

3.2.1 Effectiveness of the keypoints

To evaluate the accuracy of the proposed SIPCFE, we
apply the estimated transformation on the manually labeled
matched points in the RGB image and compute RMSE based
on the registered RGBpoints and their corresponding labeled
points in the NIR image. Figure 6 summarizes the RMSE
performance on the UWRL dataset. As illustrated, SIPCFE
outperforms the other methods with the smallest RMSE of
1.72 pixels. This is about 51.96% accuracy improvement
compared to the best combination of SIFT-based registration
method, namely, {SIFT + LGHD}, and 47.24% accuracy
improvement compared to the overall second best method,
namely, {PC + PCEHD}. Furthermore, we can see that
only one variant of SIFT-based registration method yields an
RMSE of 5 pixels or smaller. These results demonstrate that
the PCkeypoint extractor can extractmore reliable and robust
keypoints than the SIFT keypoint extractor since the PC key-
point extractor combined with any cross-spectral descriptor
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Fig. 6 Comparison of image registration results of different keypoint
extraction and keypoint feature descriptors in terms of RMSE on the
UWRL dataset

always achieves better registration results in terms of RMSE
than the SIFT keypoint extractor combined with the same
cross-spectral descriptor. In addition, the LGHD descrip-
tor achieves the best discriminative power to generate more
accurate matching pairs of keypoints since both PC and SIFT
keypoint extractors combined with the LGHD descriptor
achieves better registration results in terms of RMSE when
compared with the same keypoint extractor with three other
descriptors such as PCEHD,ELDP, and SIFT. In otherwords,
our choice of the PC keypoint extractor and the LGHD cross-
spectral descriptor is the best among the considered keypoint
extractors and cross-spectral descriptors.

The average running times of the compared algorithms for
12 images in the UWRL dataset are summarized in Fig. 7.
SIPCFE is not the fastestmethod compared to the othermeth-
ods since the PC keypoint extractor extracts significantly
more keypoints on this dataset than the SIFT keypoint extrac-
tor. For instance, SIPCFE extracts 960 keypoints on average
on each image, while {SIFT + LGHD} extracts 447 key-
points on average. Evidently, SIPCFE processes more than
twice as many keypoints as {SIFT + LGHD} does, which
leads to the slower running time for PC-based image regis-
tration methods. However, SIPCFE (e.g., {PC + LGHD}) is
only 1.5 times slower than the best SIFT-based registration
method (e.g., {SIFT+LGHD}). This ismainly becauseVFC
leaves SIPCFE with 131 inlier matched keypoints and leaves
{SIFT+ LGHD}with 142 inlier matched keypoints on aver-
age. This suggests that more outlier keypoints are removed
from the set of putative matched points for SIPCFE. In gen-

Fig. 7 Comparison of image registration results of different keypoint
extraction and keypoint feature descriptors in terms of running times
on the UWRL dataset

Fig. 8 Comparison of image registration results of the proposed
SIPCFE and its variant systems using the two noise compensationmeth-
ods in terms of RMSE on the UWRL dataset

eral, SIPCFE tends to be slightly slower than other methods,
but it delivers the least error in terms of RMSE by extracting
more accurate inliers. Overall, SIPCFE performs the best on
this benchmark dataset.

3.2.2 Effectiveness of adaptive noise

We compare the performance of the proposed SIPCFE with
its variant systems, where one of the three options of noise
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Fig. 9 Comparison of image registration results of the proposed
SIPCFE and its variant methods using different outlier rejection meth-
ods in terms of RMSE on the UWRL dataset

compensation (e.g., MAD, histogram, and T = 0) is used
in the PC function to alleviate noise effect. Figure 8 summa-
rizes the performance of the algorithm on the UWRL dataset
when using different noise compensation methods. It should
be noted that the adaptive noise method treats all the images
as clean (i.e., all the images are contaminatedwith a low level
of noise). Therefore, for the UWRL dataset, the noise option
of T = 0 achieves the same registration results as running
the algorithm adaptively and we only present the results for
running the proposed SIPCFE in Fig. 8. It is clear that the
proposed SIPCFE outperforms its variant systems with the
PC function with options of MAD and histogram. On the
other hand, the variant systems with both options result in an
average RMSE of over 5 pixels, which is undesirable. Specif-
ically, the variant system with the option of MAD leads to a
significant large RMSE value of 20.44 pixels. These results
demonstrate the effectiveness of the proposed adaptive noise
compensation method. They also show the importance of
determining the correct noise level and employing the cor-
rect noise compensation value T when using PC to locate the
reliable and robust keypoints.

3.2.3 Effectiveness of VFC

Wecompare theRMSEperformanceof the proposedSIPCFE
method against its variant methods using Classic Sample
Consensus (SAC) methods for outlier rejection. Specifically,
we consider the widely used Random Sample Consensus

Fig. 10 Comparison of image registration results of different outlier
rejection methods in terms of running time on UWRL dataset

(RANSAC) method and its derivations such as M-Estimator
SAC (MSAC) and Maximum Likelihood SAC (MLESAC).
These classic SAC methods generate a hypothesis (estima-
tion) from random samples and verify it to the data for a
certain number of iterations. At each iteration, a new random
set of samples is chosen to update the estimation parameters.
Verification is done by penalizing the outliers and estimat-
ing the best fitting function based on the inliers. Different
SAC methods have different penalizing procedures. This
mechanism makes these methods sensitive to the portion of
outliers and any nonlinearity among inliers, which ultimately
degrades the performance of the algorithm. Figure 9 com-
pares the image registration results for the proposed SIPCFE
and its variant methods using different SAC algorithms. It
clearly shows that VFC outperforms the other classic outlier
rejection methods and achieves the best performance for our
application, in which nonlinearity (non-rigidness) might be
present among inliers, or the portion of outliers might be sig-
nificant. Among the SACmethods, MLESAC and RANSAC
produce an undesirable RMSE of more than 10 pixels on
average.

Figure 10 compares the running time of outlier rejection
methods on the UWRL dataset. VFC is slightly faster than
the other SAC methods. Specifically, on average, it takes
the proposed SIPCFE around 7.35 seconds to register a pair
of RGB-NIR images and its variant system using MLESAC
as outlier removal around 7.61 seconds to register a pair of
RGB-NIR images.
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3.3 Results on the EPFL dataset

3.3.1 Effectiveness of the keypoints

The EPFL dataset contains nine categories of different natu-
ral scenes with at least 50 images in each category. To run our
benchmark, we test each algorithm separately on each cat-
egory. However, one blurry image in the forest category of
the EPFL dataset makes SIPCFE and some other approaches
either fail to register or yield extremely large RMSEs. Figure
11 (top row) shows this blurry RGB andNIR image pair. Fig-
ure 11 (middle row) shows the putative set of 102 matched
points extracted by the exhaustive matching method pro-
posed in SIPCFE. A lot of them are outliers, which accounts
for 78%of the points in the set. Figure 11 (bottom row) shows
the 29 matched points after removing outliers by VFC. It is
clear that there are still some outliers remaining after the 2-
step outlier removal process. These outliers are marked by
red lines, as shown in the bottom row of Fig. 11. This is
where both the proposed PC keypoint extractor, the LGHD
feature descriptor, and VFC fall short as a combined module.
When the sample set is small (i.e., the set of putative matched
points is small), the performance of VFC’s Tikhonov regular-
ization degrades as the number of outliers increases. SIPCFE
is not able to find enough matched points to feed into VFC.
This situation also happens to all the methods that use PC
as the keypoint extractor, namely {PC + ELDP} and {PC +
PCEHD}.

Figure 12 illustrates the intermediate results of the two-
stage keypoint feature matching for the same blurry image
processed with {SIFT+ LGHD}. The SIFT keypoint extrac-
tor is able to find a significant number of keypoints in both
RGB and NIR images. Out of these keypoints, 1883 puta-
tive matched points as shown in the top row of Fig. 12 are
found by the exhaustive matching method; since there are
a lot of matched points, we have only highlighted a few of
wrongly matched points. These matched points are further
fed into VFC to remove 50 points as outliers. We show the
resultant 1833 points in the bottom row of Fig. 12 formed a
clean set of matched points to be fed into the DLT to find the
transformation matrix for the registration task. To make our
comparison benchmark feasible, we report the results for the
forest category, with and without the blurry image.

Tables 2 and 3 summarize the RMSE and runtime per-
formance of the proposed SIPCFE and six state-of-the-art
registration methods on the EPFL dataset for each category,
respectively. Since PC-based image registration methods are
not able to find either enough keypoints or a robust set of
matched keypoints for the blurry image pair as shown in
the first row of Fig. 11, we deliberately remove this pair
from the forest category to report the registration perfor-
mance in terms of RMSE in pixels in Table 2. To make the
comparison complete, we also present the RMSE results for

Fig. 11 The intermediate registration results for a sample blurry image
from the forest category processed with SIPCFE. (top row: the sample
blurry RGB-NIR image pair; middle row: the set of putative matched
points using the exhaustive matching method of the SIPCFE; bottom
row: the set of putativematchedpoints cleanedwithVFCof theSIPCFE)

Fig. 12 The intermediate registration results for a sample blurry image
from the forest category processed with {SIFT+ LGHD}. (top row: the
set of putative matched points extracted using the exhaustive matching
method of the {SIFT+LGHD}; bottom row: the set of putativematched
points cleaned with VFC of the {SIFT + LGHD})

all images in the nine categories of the EPFL database in
Table 2 by showing the RMSE results in parentheses for
the forest category and average RMSE results in parentheses
for all images. Overall, the proposed SIPCFE method out-
performs the other methods by an average of 2.28 pixels in
RMSE with the smallest standard deviation of 1.84 for all
the images except for the blurry image in the forest category.
It should be noted that the smaller the standard deviation,
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the more robust the image registration is. As a result, we can
safely say that SIPCFE is the most accurate and robust reg-
istration method among the compared methods. Specifically,
this renders as a 14.29% accuracy improvement compared
to the second best method {SIFT + LGHD}. Even with the
blurry image included, SIPCFE slightly performs better than
{SIFT+ LGHD} with an accuracy improvement of 0.376%.
Additionally, SIPCFE delivers an RMSE of below 5 pixels
across all categories except the water category, while the
second best method {SIFT + LGHD} delivers an RMSE of
below 5 pixels across all categories except for the mountain
category. Compared to {SIFT + LGHD}, SIPCFE signifi-
cantly improves the registration performance for images in
mountain and old building categories, slightly improves the
registration performance for images in indoor, street, and
urban categories, and achieves comparable registration per-
formance for images in the other categories. It also achieves
the best accuracy in terms of RMSE in street and old building
categories among all the 7 compared methods. This suggests
that SIPCFE performs the best in scenes with a lot of variety
and corners, which are the features commonly seen in build-
ings and vehicles. The images in the water category seem to
be the most challenging to register. This is mainly due to the
homogeneous texture of water, which makes it hard for the
keypoint extractors to find distinctive keypoints.

Table 3 shows that the proposed SIPCFE is on average 2
times faster than the second best registration method {SIFT
+ LGHD}; it runs faster than {SIFT + LGHD} for all nine
categories and significantly improves the processing runtime
by 2.6 times for the forest category, which takes the longest
runtime for {SIFT + LGHD} to register. In addition, the
runtime of SIPCFE has the third smallest standard devia-
tion among all the compared methods and has a significantly
smaller standard deviation compared to {SIFT + LGHD}.
This proves that the running time of SIPCFE is scene-invaria-
nt and does not fluctuate too much. Our experiments also
confirm that SIPCFE extracts almost the same number of
features across all categories in EPFL. Other methods such
as {SIFT + SIFT}, {SIFT + ELDP}, {PC + ELDP}, and
{PC + PCEHD} are faster than our method. However, they
do not deliver good accuracy across the categories. For exam-
ple, the fastest registration method {SIFT + SIFT} achieves
the second worst accuracy with an RMSE of 3.93 pixels.
The second fast registration method {PC + ELDP} achieves
the third worst accuracy with an RMSE of 3.84 pixels. This
makes SIPCFE the best candidate from the perspectives of
both accuracy and speed.

3.3.2 Effectiveness of the adaptive noise

Table 4 lists the RMSE on the EPFL dataset for the pro-
posed SIPCFE and its variant methods, where one of the
three options of noise compensation (e.g., MAD, histogram, Ta
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and T = 0) is used in the PC function. It clearly shows that
the proposed SIPCFE leads to a better accuracy across all
categories on average than its three variant systems. Specif-
ically, the option of MAD mode estimator cannot handle all
the images in thewater category and is considered as a failed
approach. The option of T = 0 delivers over 5 pixels RMSEs
in field and water categories. The option of histogram mode
estimator delivers a large 6.86 pixels RMSE in the water
category, which is undesirable. The proposed SIPCFE has
an average RMSE of over 5 pixels (e.g., 5.51 pixels) in the
challenging water category.

3.3.3 Effectiveness of VFC

Table 5 lists the RMSE performance of the proposed SIPCFE
method and its three variant methods, which use RANSAC,
MSAC, and MLESAC to remove the outliers. For the con-
venience of comparison, we exclude the blurry image pair in
the forest category from the experiments. It is clear that VFC
achieves better performance than the other three SAC meth-
ods.With an averageRMSEof 2.28 pixels,VFC improves the
second best method (i.e., SIPCFE RANSAC) by 61.94%. In
all categories except for the challengingwater category, VFC
achieves RMSEs of smaller than 5 pixels. The overall aver-
age RMSEs of the three variant methods are all over 5 pixels.
The runtime performance of the proposed SIPCFE with dif-
ferent outlier rejectionmethods are tabulated in Table 6. VFC
runs slightly slower than the classic SAC methods. From the
perspectives of registration error and speed, the proposed
SIPCFE with VFC as the outlier remover is the best candi-
date.

3.4 Results on the EPFL subset with rotated
reference images

Table 7 summarizes the RMSE and runtime performance of
the seven compared image registrationmethods on the rotated
subset of the EPFL dataset, which contains 45 RGB-NIR
(rotated) image pairs. The proposed SIPCFE method outper-
forms all other methods. It achieves the smallest RMSE of
2.32 pixels and the smallest standard deviation of 0.78 pix-
els. This is a 12.45% improvement in accuracy compared to
the second best method (i.e., {SIFT+ LGHD}). We can also
observe that the two feature descriptors LGHD and SIFT
offer comparable accuracy in the rotated subset as in the
EPFL dataset when comparing the first two rows and the
last row of Tables 7 and 2. The two other feature descrip-
tors PCEHD and ELDP yield less accurate performance in
the rotated subset. Therefore, we can safely say that SIFT
and LGHD are more rotation-invariant in calculating robust
features around keypoints. Lastly, the runtime performance
follows almost the same trend as in Table 3, with SIPCFE
being two times faster than the second best method.
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Table 7 The RMSE (in pixels) and runtime (in seconds) performance
of the seven compared image registration methods on the rotated EPFL
dataset

METHOD RMSE ± std RUNTIME

SIFT+LGHD 2.65 ± 0.90 21.16

SIFT+SIFT 3.88 ± 2.40 2.34

SIFT+ELDP 4.15 ± 2.52 7.80

SIFT+PCEHD 3.22 ± 1.78 9.58

PC+ELDP 4.60 ± 2.85 4.42

PC+PCEHD 5.37 ± 4.60 4.81

SIPCFE 2.32 ± 0.78 10.13

4 Conclusions

In this paper,wepropose anoptimized feature-based approach
called SIPCFE to quickly, reliably, and robustly register
cross-spectral image pairs under different illumination con-
ditions and rotations. Our major contributions include:

– Employing the PC method and its adaptive noise vari-
ant, which perform well under various illuminations, to
identify reliable and robust keypoints that are invariant
to intensity changes.

– Incorporating the Log-Gabor filter responses obtained
from the keypoint extraction step to represent the char-
acteristics around each keypoint using the histogram of
the filter responses.

– Designing a sequence of outlier removal processes (i.e.,
exhaustive matching method followed by VFC) to find
reliable matched keypoints accurately.

– EmployingDLT to estimate the geometric transformation
to align the image pair.

– Proposing the RMSEmeasure to evaluate the registration
performance.

To evaluate the proposed method, we benchmark the pro-
posed SIPCFE, its three variant methods incorporating
different outlier removal algorithms, its three variant meth-
ods incorporating three different noise compensations, and
six common feature-based approaches in the cross-spectral
registration field on three datasets. For the remote sensing
images in the first dataset from UWRL, SIPCFE achieves a
47.24% improvement in registration accuracy when com-
paring to the second best state-of-the-art method {PC +
PCEHD}. The adaptive noise method proves to be working
exceptionally better than any of the three noise compensa-
tion methods. For the second dataset from EPFL, SIPCFE
achieves a 14.29% improvement in accuracy compared to
the second best method in the benchmark (i.e., {SIFT +
LGHD}). The adaptive noise method also proves to be a bet-
ter approach for this dataset. VFC is the best candidate for the
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outlier rejection method for both datasets. Overall, SIPCFE
outperforms other state-of-the-art feature-basedmethods that
are developed for cross-spectral imagery from the perspec-
tives of both accuracy and speed. However, SIPCFE cannot
register a blurry image pair with good accuracy because the
PC-based keypoint extractor cannot find either enough key-
points or a robust set of matched keypoints. For the third
dataset, SIPCFE achieves a 12.45% improvement in accu-
racy compared to the second best method in the benchmark
(i.e., {SIFT + LGHD}).

Wewill further improve the proposedmethodby exploring
different parameters in the PC-based approach and consid-
ering more discriminative features to find better-matched
keypoints.
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