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ABSTRACT

Ultrasound imaging is one of the most commonly used diag-

nostic tools to detect and classify abnormalities of the women

breast. Automatic ultrasound image segmentation provides

radiologists a second opinion to increase diagnosis accu-

racy. Deep neural networks have recently been employed

to achieve better image segmentation results than conven-

tional approaches. In this paper, we propose a novel deep

learning architecture, a Multi-Scale Self-Attention Network

(MSSA-Net), which can be trained on small datasets to ex-

plore relationships between pixels to achieve better segmen-

tation accuracy. Our MSSA-Net integrates rich local features

and global contextual information at different scales and ap-

plies self-attention to multi-scale feature maps. We evaluate

the proposed MSSA-Net on three public breast ultrasound

datasets and compare its performance with six state-of-the-

art deep neural network-based approaches in terms of five

metrics. MSSA-Net achieves best overall segmentation re-

sults and improves the second best approach by 1.21% for

Jaccard Index (JI) and 0.94% for Dice’s Coefficient (DSC).

Index Terms— breast ultrasound image segmentation,

multi-scale self attention, MSSA-Net

1. INTRODUCTION

Breast cancer is one of the most common cancers among U.S.

women [1]. Estimated 32,5010 new women cases and 42,170

women death cases are reported in U.S. in 2020 [2]. Ultra-

sound imaging is one of the most common diagnostic tools

to detect and classify abnormalities of the women breast.

Computer-Aided Diagnosis (CAD) systems using ultrasound

images have recently been developed to aid radiologists to

increase diagnosis accuracy at the early stage [3]. However,

CAD is still challenging due to the lack of accessible data and

various ultrasound artifacts. The Breast Ultrasound (BUS)

image segmentation, an effective CAD method, has been

studied for many years. Traditional BUS image segmentation

techniques [4] include thresholding, clustering, watershed,

graph method, Active Contour Model (ACM), and Markov

Random Field (MRF) method. The first four methods are easy
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to implement, but are sensitive to initial parameters and em-

ployed similarity measures. ACM and MRF methods achieve

better and robust BUS segmentation results. However, they

are complex and time-consuming [4].

Deep neural networks have recently been widely used in

image segmentation due to its superior performance. Here,

we briefly review a few representative deep neural networks

used for segmentation. U-Net [5] is trained on small datasets

to achieve high segmentation accuracy for medical images.

Res-UNet [6] uses ResNet [7] as the backbone of U-Net to

generate multi-level feature maps in the U-shape network

to achieve better segmentation results for medical images.

FCN [8] is another segmentation network defining a “skip”

architecture to combine shallow and deep features. FCN32s,

FCN16s and FCN8s are three networks built using strides of

32, 16, and 8, where FCN8s achieves the best segmentation

result for natural images. PSPNet [9] employs a pyramid

pooling module to address scene parsing to improve seg-

mentation performance. Deeplabv3+ [10] proposes atrous

convolution and atrous spatial pyramid pooling to segment

objects. All these deep networks perform well for image

segmentation and can be directly deployed in medical image

segmentation. However, they simply utilize learned feature

maps to segment tumors without considering relationships

between pixels. To address this shortcoming, researchers em-

ploy self-attention [11] to improve segmentation results by

exploring the relationship between pixels and their context.

However, it only computes the impact of a pixel on other

pixels in one feature map, which is insufficient to represent

contextual relationship.

To address the above issues, we propose a novel deep

neural network named Multi-Scale Self-Attention Network

(MSSA-Net) to achieve segmentation accuracy of 76.05%,

71.90%, and 90.76% on DatasetB [12], Dataset BUSI [13]

and Dataset 3 [14], respectively. Our main contributions are:

(1) Employing ResNet-101 as the backbone to build MSSA-

Net to integrate rich spatial and high-level semantic informa-

tion via multi-scale features. (2) Designing a novel MSSA

mechanism to explore rich contextual relationship among pix-

els in multi-scale feature maps to boost segmentation perfor-

mance. (3) Performing extensive experiments on three public

datasets by comparing MMSA-Net with six recent deep neu-

ral network-based segmentation techniques.
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Fig. 1. An overview of the proposed MSSA-Net.

2. PROPOSED METHOD

The proposed method incorporates the MSSA module in a

deep neural network, which uses ResNet-101 as a backbone,

to achieve better segmentation results. This MSSA module

combines multi-scale features learned by different convolu-

tional blocks to represent the original image at several se-

mantic levels. It integrates both low-level local spatial and

high-level semantic contextual information captured in multi-

scale features to compute contextual relationship. In this sec-

tion, we first present the architecture of MSSA-Net and then

present the MSSA module.

2.1. Overview

The architecture of the proposed MSSA-Net is illustrated in

Fig. 1. MSSA-Net uses ResNet-101 as its backbone, which

consists of five blocks. We use Ci to denote the output of

one of the five blocks of ResNet-101, where integer i cor-

responds to a block number ranging from 1 to 5. It should

be noted that Ci contains feature maps of different scales at

different depths, where scales decreases and depth increases

with increasing i. To integrate both local spatial details and

high-level semantics, we employ outputs from five blocks to

form a multi-scale feature map F . To maintain local spatial

details at the highest resolution, we resize each output (e.g.,

C2, C3, C4, and C5) to a high resolution output with the same

dimension as C1 by:

C ′
i = upsample(Ci)&&|C ′

i| = |C1| (1)

where i = 2, 3, 4, and 5 and |x| represents the dimension of a

feature map x without depth. We then concatenate all resized

outputs to construct a multi-scale feature map F by:

F = C ′
1 ⊕ C ′

2 ⊕ C ′
3 ⊕ C ′

4 ⊕ C ′
5 (2)

where ⊕ represents the concatenation operation. Each high

resolution C ′
i and the multi-scale feature map F are individ-

ually fed into the proposed MSSA module, which will be ex-

plained in subsection 2.2, to calculate contextual relationships

among pixels and obtain its weighted feature map Di by:

Di = MSSA(C ′
i, F ) (3)

Starting with D5, we convolve it with a 3 × 3 filter and con-

catenate the filtered result with D4 to integrate spatial and se-

mantic information obtained from blocks 5 and 4. We repeat

the same operation to combine spatial and semantic informa-

tion from blocks 4 and 3, blocks 3 and 2, and blocks 2 and 1.

The algorithmic view of chained concatenation operations is

as follows:

U5 = D5

for i = 5 to 2 do
Ui−1 = conv(Ui)⊕Di−1

end for
where i represents the block number and Ui−1 contains spa-

tial and semantic information from ith and i− 1th blocks. A

3 × 3 convolution is then applied to U1, followed by bilinear

interpolation and softmax to generate the segmentation result.

2.2. Multi-Scale Self-Attention

Self-attention methods [11, 15] have been widely used to

compute contextual relationships to better represent features

learned by convolutional layers. They take a feature map

as the input and output a weighted feature map containing

contextual relationships. However, this weighted feature map

cannot provide sufficient contextual information. Specifi-

cally, a feature map learned by shallow layers contains rich

local spatial details while missing high-level semantics. A

feature map learned by deep layers contains rich high-level

semantic information while missing local spatial details.

To address aforementioned shortcomings, we propose

a MSSA module to integrate both local spatial and high-

level semantic contextual information via multi-scale features

learned by different convolutional blocks. The MSSA module

takes a multi-scale feature map F and a resized local feature

map C ′
i as inputs and generates a weighted multi-scale feature

map Di that contains contextual relationships among pixels

from local spatial and high-level semantic perspectives.

Fig. 2 illustrates the proposed MSSA model. For the

input of a feature map C ′
i ∈ R

H×W×Ch1 with H , W , and

Ch1 respectively representing the height, width, and chan-

nel dimensions and i representing the block number, we use

a 1 × 1 convolution to transform C ′
i into a new feature map

Y ∈ R
H×W×Ch1/8. We use a ratio of 1/8 to reduce the chan-

nel number to its 1/8 since this ratio has been empirically

determined to be optimal [11]. Similarly, for the input of a

multi-scale feature map F ∈ R
H×W×Ch2 , we use a 1×1 con-

volution to generate a new feature map Z ∈ R
H×W×Ch1/8.

Since Ch2 is significantly larger than Ch1, we reduce the

channel number of F to Ch1/8 to conserve time and memory

space and enable matrix computations in the next few steps.

We then reshape Y to Yr of size (H ×W ) × Ch1/8 and re-

shape and transpose Z to Zrt of size Ch1/8 × (H ×W ). A

multiplication between Yr and Zrt generates a map of size
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Fig. 2. Illustration of the proposed MSSA module.

(H×W )× (H×W ). A softmax is performed on this map to

generate a normalized map A, also called the attention map.

In other words, the attention map A is computed by:

A(m,n) =
exp(Yr(m, :) · Zrt(:, n))

∑H×W
n=1 exp(Yr(m, :) · Zrt(:, n))

(4)

where : is an operator to get all values in a row or a column

and A(m,n) represents the impact of the nth column of Zrt

on the mth row of Yr. A large value in A indicates a high

correlation between Yr and Zrt (i.e., between C ′
i and F ).

On a second branch, we use another 1× 1 convolution to

transform C ′
i into a new feature map X ∈ R

H×W×Ch1 and

reshape and transpose X to Xrt of size Ch1 × (H × W ).
We then perform a matrix multiplication between Xrt and A.

This result is reshaped to the size H×W×Ch1 and multiplied

with a learnable parameter μ to gradually assign appropriate

weights to A to generate a weighted attention map as in [11],

which is further added to the input C ′
i to generate a weighted

feature map Di ∈ R
H×W×Ch1 .

Di(m,n)=μ× reshape((Xrt(m, :) ·A(:, n))) + C′
i(m,n) (5)

where Di(m,n) contains the value of a weighted feature map

at location (m,n) and μ is initialized to 0 to allow the network

to rely on cues of local neighborhood to maximize learning.

3. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed MSSA-Net

method by conducting experiments on three public BUS im-

age datasets: Dataset B [12], Dataset BUSI [13] and Dataset

3 [14]. Dataset B has 163 grayscale images of a mean size of

760× 570, where most images contain small tumors. Dataset

BUSI contains 780 grayscale images of an average size of

500 × 500 for women between 25 and 75 years old. It is

the most challenging one among the three datasets since tu-

mors come in different sizes and some tumors have irregular

borders. Dataset 3 contains 320 grayscale images of a size

of 128 × 128 for patients whose ages are in the range of

46.6± 14.2. In total, there are 1263 BUS images.

We further compare the performance of MSSA-Net with

six state-of-the-art deep neural network-based segmentation

methods on three aforementioned datasets. The six compared

methods are U-Net [5] with ResNet-101 as a backbone [6]

(denoted as U-ResNet), U-ResNet with self-attention [11] ap-

plied on five blocks (denoted as U-ResNet SA), ResNet-101

[7] by resizing the output of the 5th block to the input size,

FCN8s [8], PSPNet [9], and Deeplabv3+ [10]. We use five

metrics, namely, True Positive Ratio (TPR), False Positive

Ratio (FPR), Jaccard Index (JI), Dice’s Coefficient (DSC),

and Area Error Ratio (AER), to evaluate segmentation results.

Specifically, TPR and FPR respectively compute the propor-

tion of correct and incorrect predictions in positive class. JI

computes the overlap percentage between the ground truth

and the segmentation result. DSC or F -measure evaluates

the similarity between the ground truth and the segmentation

result. AER computes average test errors over all datasets.

Fig. 3. Comparison of MSSA-Net and its variants in terms of

five metrics: TPR, JI, and DSC (left); FPR and AER (right).

Fig. 3 compares performance of MSSA-Net and its five

variants on three datasets in terms of five measures. MSSA-

Net involves combined attention layers U5 through U1 while

its variants involve some selected attention layers or no at-

tentions. Five variants of MSSA-Net are as follows: V1 for

variant 1 without involving attention layers; V2 for variant

2 involving one attention layer U1; V3 for variant 3 involv-

ing combined attention layers U2 and U1; V4 for variant 4

involving combined attention layers U3 through U1; V5 for

variant 5 involving combined attention layers U4 through U1;

V6 for the proposed MSSA-Net. We compute average values

of each metric for three datasets to compare segmentation per-

formance. Specifically, we present TPR, JI, and DSC results

in the left plot of Fig. 3 since larger values indicate better

segmentation results and present FPR and AER results in the

right plot of Fig. 3 since smaller values indicate better seg-

mentation results. It clearly shows that MSSA-Net yields the

largest TPR, JI, and DSC values and the smallest FPR and

AER values. Variant 1 yields the smallest JI and DSC val-

ues and the largest FPR and AER values. With the exception

for the TPR metric, JI and DSC values gradually increase and

FPR and AER values gradually decrease as more attention

layers are employed. In other words, segmentation results

gradually improve as more attention layers are employed.

Table 1 summarizes segmentation results of MMSA-Net

and six peer methods in terms of five measures on three

datasets. MMSA-Net has the highest TPR, JI, and DSC val-
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Fig. 4. Illustration of segmentation results. (a) BUS images; (b) Ground truth; Segmentation results obtained by (c) Deeplabv3+;

(d) PSPNet; (e) FCN8s; (f) ResNet-101; (g) U-ResNet; (h) U-ResNet SA; (i) MSSA-Net.

ues and the lowest FPR and AER values on Dataset BUSI

and therefore achieves the best performance. Specifically, it

improves the second best method by 2.35%, 1.42%, 1.32%,

2.82%, and 5.67% for TPR, JI, DSC, FPR, and AER, respec-

tively. MMSA-Net achieves the best performance in terms of

JI, DSC, FPR, and AER and a comparable TPR for the other

two datasets. MMSA-Net also achieves the smallest standard

deviation for all five metrics (e.g., 0.21 for TPR, 1.30 for

FPR, 0.21 for JI, 0.21 for DSC, and 1.36 for AER). Its vari-

ants 4 and 5 outperform six compared methods for Dataset

BUSI in five metrics and outperform six compared methods

in JI, DSC, FPR, and AER and achieve comparable TPRs for

the other two datasets. MSSA-Net and U-ResNet SA respec-

tively have 71,534,626 and 98,374,562 trainable parameters.

On average, it takes 0.031 seconds for MSSA-Net and 0.035

seconds for U-ResNet SA to segment an image.

Table 1. Summary of tumor segmentation results (%)
Datasets Methods TPR FPR JI DSC AER

Dataset B[12]

U-ResNet 85.67 24.12 74.70 82.83 38.45
U-ResNet SA 84.32 24.98 74.87 82.85 40.67
ResNet-101 46.52 26.70 37.35 46.77 80.18
FCN8s 77.95 32.98 62.27 72.90 55.03
PSPNet 81.06 23.77 70.65 79.73 42.71
Deeplabv3+ 63.44 76.20 50.57 60.78 112.77
proposed 85.63 19.48 76.05 83.78 33.85

Dataset BUSI
[13]

U-ResNet 79.20 34.82 70.59 79.03 55.63
U-ResNet SA 79.02 29.80 70.89 79.60 50.78
ResNet-101 53.30 36.94 44.37 54.20 83.64
FCN8s 78.19 44.94 64.00 74.28 66.75
PSPNet 78.76 33.96 69.79 78.56 55.20
Deeplabv3+ 57.34 44.51 48.12 57.98 87.18
proposed 81.06 28.96 71.90 80.65 47.90

Dataset 3[14]

U-ResNet 94.24 4.65 90.14 94.76 10.40
U-ResNet SA 94.05 4.48 90.09 94.73 10.43
ResNet-101 90.31 6.88 84.53 91.57 16.57
FCN8s 94.27 5.67 89.32 94.30 11.40
PSPNet 94.27 4.63 90.18 94.77 10.37
Deeplabv3+ 91.78 4.89 87.58 93.26 13.11
proposed 94.18 3.80 90.76 95.14 9.62

Fig. 4 presents segmentation results of MSSA-Net and

six compared methods for one representative BUS image in

Dataset B (top row), Dataset BUSI (middle row), and Dataset

3 (bottom row). For the BUS image in Dataset B containing

a small tumor and a large tumor-like region with a clear con-

tour, Deeplabv3+, PSPNet, ResNet-101, and U-ResNet mis-

takenly segment the tumor-like region and ResNet-101 mis-

takenly segments the tumor region. FCN8s and U-ResNet SA

segment a single tumor with a JI value of 63.28% and 72.46%,

respectively. MSSA-Net gives a more accurate segmentation

result with the highest JI value of 82.17%. For the BUS im-

age in Dataset BUSI containing one irregular tumor without

a clear contour, MSSA-Net achieves the highest JI and DSC

values of 74.43% and 84.68%, and the lowest AER value of

28.79%. The other six methods fail to segment the tumor

since their JI values are less than 55%, DSC values are less

than 70%, and AER values are larger than 65%. For the BUS

image in dataset 3 containing a big tumor at the center with a

clear contour, all methods achieve good segmentation results.

MSSA-Net outperforms the other six methods in all five mea-

sures and therefore achieves the best segmentation result.

MSSA-Net is implemented by Pytorch. All experiments

are conducted on Ubuntu 18.04 system, Intel(R) Xeon(R)

CPU E5-2620 2.00 GHz, and two NVIDA GeForce 1080

graphics cards. Input images and ground truths are resized to

128×128. The Stochastic Gradient Descent (SGD) optimizer

utilizes a learning rate of 0.001, a momentum of 0.99, a batch

size of 12, and epochs of 100. Cross-entropy is employed

in the loss function. To ensure fair comparison, we set these

parameters to be the same for all compared methods. We also

employ a 10-fold cross-validation to evaluate the performance

of all compared methods on three datasets.

4. CONCLUSIONS

We propose a novel MSSA-Net for BUS image segmentation.

It integrates rich spatial and high-level semantic information

via multi-scale feature maps and designs an MSSA mecha-

nism to explore rich contextual relationship among pixels to

boost segmentation performance. MSSA-Net outperforms six

state-of-the-art deep neural network-based methods in terms

of FPR, JI, DSC, and AER and achieves a compare perfor-

mance in TPR on three public datasets. The training set con-

taining 90% of images in each dataset (around 1146 images

in total) is sufficient to train the network to achieve good seg-

mentation results.

830

Authorized licensed use limited to: Utah State University. Downloaded on June 10,2021 at 16:43:43 UTC from IEEE Xplore.  Restrictions apply. 



5. COMPLIANCE WITH ETHICAL STANDARDS

This research study was conducted retrospectively using hu-

man subject data made available in open access by [12, 13,

14]. Ethical approval was not required as confirmed by the

license attached with the open access data.

6. ACKNOWLEDGMENTS

No funding was received for conducting this study. The au-

thors have no relevant financial or non-financial interests to

disclose.

7. REFERENCES

[1] C. E. DeSantis, J. Ma, M. M. Gaudet, L. A. Newman,

K. D. Miller, A. Goding Sauer, A. Jemal, and R. L.

Siegel, “Breast cancer statistics, 2019,” CA: A Can-
cer Journal for Clinicians, vol. 69, no. 6, pp. 438–451,

2019.

[2] “U.s. breast cancer statistics,” https://www.
breastcancer.org/symptoms/understand_
bc/statistics.

[3] E. L. Henriksen, J. F. Carlsen, I. M. Vejborg, M. B.

Nielsen, and C. A. Lauridsen, “The efficacy of using

computer-aided detection (cad) for detection of breast

cancer in mammography screening: a systematic re-

view,” Acta Radiologica, vol. 60, no. 1, pp. 13–18, 2019.

[4] Q. Huang, Y. Luo, and Q. Zhang, “Breast ultrasound

image segmentation: a survey,” International Journal of
Computer Assisted Radiology and Surgery, vol. 12, no.

3, pp. 493–507, 2017.

[5] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convo-

lutional networks for biomedical image segmentation,”

in International Conference on Medical Image Comput-
ing and Computer-assisted Intervention. Springer, 2015,

pp. 234–241.

[6] X. Xiao, S. Lian, Z. Luo, and S. Li, “Weighted res-unet

for high-quality retina vessel segmentation,” in 2018
International Conference on Information Technology in
Medicine and Education (ITME), 2018, pp. 327–331.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep resid-

ual learning for image recognition,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[8] J. Long, E. Shelhamer, and T. Darrell, “Fully convo-

lutional networks for semantic segmentation,” in Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 3431–3440.

[9] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid

scene parsing network,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2017, pp. 2881–2890.

[10] L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and

H. Adam, “Encoder-decoder with atrous separable con-

volution for semantic image segmentation,” in Proceed-
ings of the European Conference on Computer Vision
(ECCV), 2018, pp. 801–818.

[11] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena,

“Self-attention generative adversarial networks,” in In-
ternational Conference on Machine Learning, 2019, pp.

7354–7363.

[12] M. H. Yap, G. Pons, J. Martı́, S. Ganau, M. Sentı́s,

R. Zwiggelaar, A. K. Davison, and R. Martı́, “Auto-

mated breast ultrasound lesions detection using convo-

lutional neural networks,” IEEE Journal of Biomedical
and Health Informatics, vol. 22, no. 4, pp. 1218–1226,

2017.

[13] W. Al-Dhabyani, M. Gomaa, H. Khaled, and A. Fahmy,

“Dataset of breast ultrasound images,” Data in Brief,
vol. 28, pp. 104863, 2020.

[14] Q. Huang, Y. Huang, Y. Luo, F. Yuan, and X. Li,

“Segmentation of breast ultrasound image with semantic

classification of superpixels,” Medical Image Analysis,

vol. 61, pp. 101657, 2020.

[15] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu,

“Dual attention network for scene segmentation,” in

Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2019, pp. 3146–3154.

831

Authorized licensed use limited to: Utah State University. Downloaded on June 10,2021 at 16:43:43 UTC from IEEE Xplore.  Restrictions apply. 


