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Abstract: Detection of traffic signs and light poles using light detection and ranging (LiDAR) data has demonstrated a valid
contribution to road safety improvements. In this study, the authors propose a fast and reliable method, which can identify
various traffic signs and light poles in mobile LiDAR data. Specifically, they first use the surface reconstruction algorithm to
extract the normal vectors of the points as one of the characteristic features and apply k-means on the characteristic features of
the points to automatically segment the data into road or non-road points. They then employ sliding cuboids to search for high-
elevated objects that are located near the borders and on top of the road points. They further employ the random sample
consensus algorithm to remove outliers and keep the points that fall on the perpendicular planes to the road trajectory. Finally,
they introduce a modified seeded region growing algorithm to remove noisy points and incorporate the shape information to
reject the false objects. A set of extensive experiments have been carried out on the datasets that are captured by Utah
Department of Transportation from I-15 highway. The results demonstrate the robustness of the proposed method in detecting
almost all traffic signs and light poles.

1 Introduction
Mobile light detection and ranging scanning (MLS) has been
considered as one of the most growing technologies in recent years
and has been utilised in various applications such as digital terrain
models, three-dimensional (3D) asset inventory mapping,
streetscape design, and traffic sign extraction. Significant effort has
been made in recent years to automatically segment and classify
large-scale MLS datasets into different regions. The resultant
regions of interest (ROIs) vary from one study to another.
However, a majority of the methods categorise the datasets into
specific classes such as cars, humans, light poles, traffic signs, and
so on. Here, we briefly review several representative approaches to
processing MLS datasets.

Several methods project 3D information onto the 2D grid to
reduce the complexity and the computational time. The 2D grid is
called the elevation image or the digital elevation model and each
pixel in the 2D grid contains the elevation information. Hernández
and Marcotegui [1] introduce a method to project the data to
elevation images and then propose a segmentation method based
on morphological operations and support vector machines (SVMs)
to classify the data into four categories, i.e. car, lamp post,
pedestrian, and others. Similarly, Zhu et al. [2] initially project
MLS data to a range image, in which columns represent the
sequential order of measurement, rows represent the acquisition
time of each laser scan line, and pixel values code the distance
from the sensor to the point. They then use SVMs and the decision
tree-based segmentation-classification method on the projected
points to segment their dataset into regions of different objects.
Projecting the MLS data onto the elevation images and performing
segmentation on the projected images is fast and can be mainly
used for guiding autonomous vehicles, which does not require high
accuracy but requiring fast speed to detect and predict obstacles in
real time.

The slower but more accurate methods directly process the 3D
point clouds. These approaches are more applicable for the cases
that high accuracy is valued more than fast speed. For instance, the
task of traffic sign maintenance and road inspection requires an
accurate detection of the locations of the road. Douillard et al. [3]
propose a set of segmentation methods for 3D data based on

voxelisation and meshing. They also provide empirical evidence of
the benefit of extracting ground as the prior for the segmentation
method to improve the accuracy. Lin et al. [4] propose a statistics-
based approach using principal component analysis (PCA) and
geometric median to extract eigen-features from a local set of point
clouds and segment the eigen-feature-based data into building and
non-building categories.

Since traffic signs are one of the most important road features,
various mature traffic sign extraction methods have been proposed
for images and videos. For example, Soheilian et al. [5] present an
automatic approach for utilising the colour information to identify
the silhouette of signs in every individual image. They then
propose a multi-view constrained 3D reconstruction algorithm to
provide an optimum 3D silhouette to detect traffic signs. Adam and
Ioannidis [6] propose to extract traffic signs by using colour images
acquired by a camera mounted on the moving vehicle. They detect
the ROIs and classify them as traffic or non-traffic signs by feeding
the regions’ histogram of oriented gradient (HOG) descriptors to a
trained SVM. Khalid et al. [7] estimate a global threshold value
using the correlation property of a given image and segment the
regions of traffic signs based on the global threshold and
morphological operations. They further detect the traffic signs by
feeding HOG descriptors to a trained SVM-k-nearest neighbour
classifier.

Recently, researchers have proposed various methods to assist
the implementation of mobile laser technology for safer navigation
of intelligent vehicles and better road maintenance, inspection, and
safety. However, few state-of-the-art methods extensively study the
light detection and ranging (LiDAR) data. Pu et al. [8] introduce
one of the pioneer studies in detecting and distinguishing the traffic
signs using LiDAR data. In this work, they initially segment the
data into one of the three coarse categories including the ground
surface, the objects on the ground, and the objects off the ground.
They further use the size, shape, and orientation information to
classify the on-ground points to more detailed classes such as
traffic signs. Yokoyama et al. [9] employ PCA to extract the pole-
like objects from MLS data and classify them into utility poles,
lamp posts, or street signs. Yu et al. [10] propose a voxel-based
upward growing method to remove the ground points and a voxel-
based normalised cut to segment the remaining MLS point clouds
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data into street light poles, traffic signposts, or bus stations. Riveiro
et al. [11] employ the geometric and radiometric information of
retro-reflective traffic signs in the segmentation process to compute
the optimal intensity threshold to separate the traffic signs from the
backgrounds. Lehtomaki et al. [12] propose to remove ground and
building points from the original data to reduce the search space.
They then incorporate three sets of features, i.e. local descriptor
histogram, spin images, and general shape and point distribution, to
segment the data into trees, lamp posts, traffic signs, cars,
penetrations, and hoardings.

In this paper, we propose an effective method to automatically
detect traffic signs and light poles from MLS point clouds in
highway areas without any pre-processing or learning steps.
Specifically, we first extract the road points (ground points) from
the original dataset without involving any manual pre-processing
steps. We then detect traffic sign and light pole candidates near the
border or on top of the roads and automatically classify them to the
corresponding classes without involving any learning processes.
Finally, we remove false objects by using shape information of
traffic sign and light pole candidates. Unlike the proposed method,
previous studies [8–11] mainly extract traffic signs and light poles
in urban areas, where either manual pre-processing is required to
remove the road points (ground points) [9] or a training process is
employed to learn a classifier for identifying the objects [12]. Their
performance is significantly reduced when processing the mobile
LiDAR data in highway areas due to the sloping roads and the
existence of highway objects such as billboards, bridges, high
elevated curbs, trees, and so on. In addition, some of the existing
methods are mostly based on pole-like features [8, 9, 13], which
are not effective to deal with light poles attached with traffic signs
or advertising boards and light poles near trees. The contributions
of this paper are as follows:

• Using the surface reconstruction algorithm to extract normal
vectors of the points as one of the selected characteristic
features;

• Proposing an unsupervised road point extraction scheme by
applying the k-means clustering on the characteristic features;

• Designing a sliding cuboid to identify groups of candidate points
by searching for the high elevated objects above or beside the
roads;

• Employing the random sample consensus (RANSAC) algorithm
in a novel and unique way to select the robust candidate points
by removing high elevated outliers that do not represent
perpendicular planes along the vehicle trajectory;

• Proposing a LiDAR modified seeded region growing algorithm
to remove the noisy points around the objects;

• Introducing a two-step post-processing method to remove false
positive objects.

The remaining sections of the paper are organised as follows.
Section 2 presents the proposed method for extracting road, traffic
signs, and light poles. Section 3 presents the experimental results
on 8 mileposts of the I-15 highway and evaluates the performance
of the proposed method and its variant method without post-
processing steps. Section 4 draws the conclusion and presents the
direction of future work.

2 Proposed method
The proposed method consists of three main components, namely,
road point extraction, traffic sign and light pole extraction and
classification, and post-processing. For the road point extraction
component, we utilise the surface reconstruction algorithm to
extract the characteristic features such as altitude, reflectivity, and
orientation to represent each MLS point and apply the
unsupervised k-means on the characteristic features to quickly
extract candidate road points. For the traffic sign and light pole
extraction and classification component, we design a sliding cuboid
to quickly identify groups of candidate points along the road points
and employ RANSAC to remove non-planar false candidate points
along the vehicle trajectory. This step not only removes the non-
planar objects but also eliminates the outliers from the LiDAR

dataset. For the post-processing component, we utilise the modified
seeded region growing to remove the outlier points around the
candidates and employ shape information to remove the false
objects. By employing RANSAC and modified seeded region
growing techniques, we are able to successfully extract both traffic
signs and light poles in the noisy dataset. We believe that other de-
noising techniques [14, 15], with some modifications, may yield
similar performance as the proposed method. In the following, we
explain each component in detail.

2.1 Road point extraction

The original point clouds, as the input, contain a large number of
4D points. Each point includes the global positional values (i.e. x,
y, and z) and the intensity value. The intensity is a measure of the
returned strength of the laser pulse that is generated from the point.
To reduce the computational time and facilitate processing, we
segment the original point clouds to a predefined number of
sections. Since the elevation of the points may gradually vary along
the uneven or hilly road direction, the points in a smaller section
tend to have more similar elevation than the points in a larger
section. Each section is a portion of the dataset along the length of
the road (i.e. y-axis). In order to illustrate the procedure of vertical
section construction, we demonstrate a section of the road in the
global Cartesian coordinate system as shown in Fig. 1, where the x,
y, and z axes are highlighted in cyan, green, and red, respectively.
The advantage of using the global Cartesian coordinate system is
that the direction of x-axis and y-axis is fixed even when the road
rotates and does not keep straight. We then process each section
separately in the following steps and the resultant points are
concatenated to uniquely represent the road. 

2.1.1 Normal vector estimation: We aim to estimate the normal
vector for each data point to represent its orientation. We adopt the
surface construction method [16], which uses a fixed number of
neighbouring points to fit a local plane to determine the normal
vector of each data point in a section. For each section l, we
include the location information (e.g. x, y, and z) of all the points in
a set of 3D data, i.e. Pl = {pl, 1, …, pl, nl} ⊂ ℝ3, where nl is the
number of data points in section l. We first find six nearest
neighbours of the point pl, i (e.g. nbhd(pl, i)) to fit a local plane and
compute the normal vector n̄l, i associated with each point pl, i in set
Pl. We then compute the centroid of the points in nbhd(pl, i) as the
centre p̄l, i. We finally employ the PCA method on nbhd(pl, i) to
calculate the smallest principal vector as the normal vector n̄l, i. To
do so, we form the 3 × 3 covariance matrix C of nbhd(pl, i) as
follows:

C = ∑
p ∈ nbhd(pl, i)

(p − p̄l, i) ⊗ (p − p̄l, i)⊤
(1)

where ⊗ denotes the outer product operator and C is symmetric
positive semi-definite. We then calculate the normal vector n̄l, i of
the point pl, i by solving the following optimisation function:

minimise
n̄l, i

n̄l, i
⊤ Cn̄l, i (2a)

Fig. 1  Demonstration of a section of the road on top of the global
Cartesian coordinate system, where x-axis is shown in cyan, y-axis is shown
in green, and z-axis is shown in red
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subjectto n̄l, i
⊤ n̄l, i = 1 (2b)

This optimisation problem can be solved by introducing the
Lagrange multiplier γ and setting the Lagrangian derivative to zero.
The following equation can be derived:

det(C + C⊤ − 2γI) = 0 (3)

Here, I is the identity matrix in ℝ3. We can infer that γ and n̄l, i are
eigenvalue and eigenvector of the covariance matrix C,
respectively. Let the eigenvalues of C be λi

1, λi
2, and λi

3 (i.e.
λi

1 ≥ λi
2 ≥ λi

3) and their associated unit eigenvectors be v^i
1, v^i

2, and v^i
3,

respectively. It is proven that γ is the smallest eigenvalue (i.e. λi
3)

and n̄l, i is either v^i
3 or −v^i

3 such that

Cn̄l, i = γn̄l, i (4)

Multiplying n̄l, i on both sides of (4), we obtain

n̄l, i
⊤ Cn̄l, i = γn̄l, i

⊤ n̄l, i (5)

Since n̄l, i
⊤ n̄l, i = 1, (5) can be simplified to

n̄l, i
⊤ Cn̄l, i = γ (6)

The left side of (6) is the same optimisation function in (2).
Therefore, γ is the smallest eigenvalue and its eigenvector is n̄l, i.
Here, we denote n̄l, i as n̄l, i = ui^ + v j^ + wk

^
, where u, v, and w are

the projected components in the global Cartesian coordinate
system.

2.1.2 Data points clustering: We aim to cluster the data points to
road or non-road classes by incorporating the normal vector of the
points as one of the characteristic features. Specifically, for each
data point in the point clouds, we propose to concatenate its 3D
normal vector (i.e. orientation) with its z value (i.e. elevation) and
intensity value (i.e. reflectivity) to construct a 5D feature vector to
represent its road characteristics. We denote the set of the new
characteristic features of the data points in section l as
Pl′ = {pl, 1′ , …, pl, nl′ } ⊂ ℝ5. We then employ the k-means clustering
algorithm [17], a powerful unsupervised method with k being 2, on
Pl′ to group all the data points into either the road or non-road
cluster. Since the MLS point clouds mostly contain the road points,
we select the cluster with the larger number of points as the road
cluster. The road clusters within each section, Roadl, are then
concatenated to contain the extracted road points in a set denoted
as RoadAll. Algorithm 1 (see Fig. 2) summarises the proposed
method to extract RoadAll. 

2.2 Traffic sign and light pole extraction and classification

Traffic signs are mostly located near the border or on top of the
roads to be visible for drivers. In addition, light poles are raised
sources of light on the edges of a road or path. We use this prior
information to eliminate the data points that are located off the road
and eliminate the off-road counterfeit objects such as billboards
and buildings that might have similar characteristics such as
intensity and elevation as the traffic signs or light poles. As a
result, we effectively reduce the search space in high-density MLS
point clouds and reduce the computational time. In addition, we
utilise some observational statistics (e.g. height, elevation, and
planar projection of traffic signs or light poles) to further remove
the points that are unlikely to be road points.

2.2.1 Cuboid searching: We aim to utilise a sliding rectangular
cuboid to find the traffic signs located near the border or on top of
the road and the light poles that are situated near the borders of the
roads. Specifically, we use the road points in each section l (e.g.

Roadl) to find their ranges for the x and y values. We then select
the points in Pl, whose x and y values fall into these calculated
ranges. The selected set is denoted as Ql = {ql, 1, …, ql, ml} ⊂ ℝ4,
where ml is the number of points in Ql and ml ≪ nl due to the
elimination of a significant number of off-road points. It should be
noted that the points in Ql may correspond to roads, traffic signs,
light poles, bridges, moving vehicles, and other objects near or on
the roads. To solve this issue, we design a rectangular cuboid
search strategy to identify the points in Ql that correspond to the
traffic signs and light poles.

We first define the starting point in xy-plane of each section l as
Sl = (xl, s, yl, s), where xl, s and yl, s are the minimum x and y values of
the points in Ql. We then put a rectangular cuboid with the
dimension of 4 × 4 × inf (i.e. no limitation in the z-direction) at Sl
and continue moving this sliding cuboid along 4 m at the x-
direction or 4 m at the y-direction until the sliding cuboids cover all
the points in Ql. For each sliding cuboid that contains any points in
Ql, we put these points in a set denoted as
Wl

(ci) = {wl, 1
(ci), …, wl, m′l

(ci) } ⊂ ℝ4, where ci is the upper-left corner of
the satisfied sliding cuboid and ml′ is the number of points within
this cuboid. We observe that a majority of traffic signs have an
elevation range of more than 3 m and are located above 1.5 m from
the road surface. Moreover, all the light poles have the range of
elevation more than 3 m. Therefore, we first utilise the height
information to filter out some obvious outliers by removing the
Wl

(ci) set, whose range of z values is <3. For each kept set Wl
(ci), we

further remove any points with the height values less than an
adaptive threshold, which is computed by a predefined value (e.g.
1.5) plus the mean height value of all the points in Wl

(ci). The
remaining points in a kept Wl

(ci) forms the candidate set,

X⌣ l
(ci) = {x⌣l, 1

(ci), …, x⌣l, m′′l
(ci) } ⊂ ℝ4, where ml′′ is the number of points in

the candidate set and ml′′ < ml′.

2.2.2 Plane fitting: We aim to utilise the planary property to
extract traffic signs and light poles by finding the points that
represent planes. Specifically, in order to identify the ROIs in the
candidate set X⌣ l

(ci) for each cuboid location ci in section l, we adopt
the RANSAC algorithm [18] to discard the points that do not
belong to a plane estimated by a sufficient number of inliers.

Fig. 2  Algorithm 1: road point extraction
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RANSAC is an iterative method for estimating parameters of a
mathematical model from a set of data points containing outliers.
The input to RANSAC contains the candidate set X⌣ l

(ci), a
parametrised fitting model, and two confidence parameters (e.g. the
maximum distance and the maximum angular distance). The
parametrised model is a reference normal vector, whose element is
the projected value at the y-direction. This vector is used as an
orientation constraint to fit a plane that has an approximate normal
vector similar to the reference vector. RANSAC fits a plane to the
input points to achieve the maximum distance and the maximum
angular distance from the inlier points to the plane.

For a candidate set X⌣ l
(ci), RANSAC iteratively selects a random

subset from this set and tests a hypothesis that the points in the
selected subset are inliers. A plane is fitted to the hypothetical
inliers and all other data points are then examined against the fitted
plane. The points fitting well to the estimated model are considered
as hypothetical inliers. The plane is iteratively reestimated from the
inliers. If a sufficient number of points are evaluated as inliers, the
estimated plane is considered as reasonably good. Otherwise, it is
rejected. The candidate plane is finally evaluated by estimating the
error of the inliers to the plane. This process is repeated for a fixed
number of times. We use the resultant inlier indices to select the
points within X⌣ l

(ci) as the candidates for traffic signs and light poles.

In other words, we discard the outlier points in X⌣ l
(ci) that do not

represent a perpendicular surface to the road direction.
One of the advantages of RANSAC is its robust estimation of

plane fitting. Particularly, it can estimate the parameters of planes
with a high degree of accuracy even when there are a significant
number of outliers in the input data. Its shortcoming is that the
results may not be optimal when the number of iterations is
limited. As a result, there is a trade-off between the number of
iterations and a reasonable output model. In the proposed method,

we set the number of iterations to be 1000 to yield overall best
output models.

2.2.3 Intensity thresholding: We aim to use the highly reflective
property to remove the points that do not belong to traffic signs and
light poles. Since traffic signs are covered by highly reflective
materials to make them visible during any weather conditions at
days and nights and light poles are manufactured with metals, their
corresponding point clouds normally have higher intensities. We
can then use the intensity information to extract traffic signs and
light poles. In the proposed method, we discard a candidate set X⌣ l

(ci)

if the average intensity of the points within this set is less than a
predefined threshold. All the remaining candidate sets X⌣ l

(ci) s for all
sections (l = 1, …, 24) are kept as candidates for traffic signs and
light poles. Algorithm 2 (see Fig. 3) summarises the proposed
method to extract X⌣ l

(ci) s. 

2.2.4 Classification: We aim to use the height property to classify
the data into traffic sign and light pole classes. Since traffic signs in
highway areas usually have lower elevation (height) than light
poles, we use this prior information to estimate a threshold for the
height of the candidates to automatically classify each X⌣ l

(ci) as either

the traffic sign or the light pole. For each X⌣ l
(ci) set, we first find the

range of z of its points. Second, we use an estimated threshold θ to
segment the candidate points into two groups: GR1 consisting of all
candidate points whose z ranges are less than θ and GR2 consisting
of remaining candidate points. Third, we calculate the average z
ranges μ1 and μ2 for the candidate points in groups GR1 and GR2,
respectively. Fourth, we repeat the process by segmenting the
candidate points into two groups using the new θ = (μ1 + μ2)/2
until the difference between the θ values in two iterations is smaller
than a predefined threshold.

Since a dataset might contain traffic signs or light poles or none,
we set the final threshold Θ = max(θ, 15) to avoid
misclassification. Specifically, we classify the candidates as traffic
signs if the range of z of the points is less than Θ. Otherwise, we
classify the candidates as light poles. We use TSl

(ci) to denote traffic

signs in X⌣ l
(ci) and use LPl

(ci) to denote light poles in X⌣ l
(ci). The TSl

(ci)'s
for l = 1, …, 24 are concatenated to obtain traffic sign points in the
whole dataset as TSAll. Similarly, the LPl

(ci)'s for l = 1, …, 24 are
concatenated to obtain light pole points in the whole dataset as
LPAll. Algorithm 3 (see Fig. 4) summarises the proposed method to
classify the candidates as traffic sign and light pole classes. 

It should be noted that this classification is an unsupervised
pattern recognition technique for LiDAR data, which utilises shape
information (height) to extract patterns of traffic sign and light pole
candidates for classification. The supervised deep learning-based
techniques have also been extensively used in object classification
tasks [19–23]. However, they require a large amount of clean data
for training and validation. For instance, researchers can build
various pre-trained networks such as VGG-net [24], AlexNet [19],
and ResNet [20] using a large amount of camera images from the
web or the other benchmark datasets including ImageNet [25],
PASCAL VOC [26], and so on. Moreover, deep learning
approaches tend to achieve better performance when there are a
sufficient and balanced number of positive and negative samples
with the same size. It should be emphasised that deep learning
approaches may not necessarily improve the classification accuracy
in our task since we do not have a large training dataset containing
a sufficient and balanced number of positive samples (e.g. traffic
signs and light poles) and negative samples (e.g. billboards,
buildings etc.). In addition, we cannot use the available pre-trained
3D object networks (e.g. PointNet [21]) to achieve decent
classification accuracy for 3D point cloud data in our case due to
distinct distributions and nature between our dataset and the
ShapeNetPart dataset [27] that is used to train PointNet. Re-
sampling positive and negative data to the same dimension may
also lead to some information loss.

Fig. 3  Algorithm 2: traffic sign and light pole extraction
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2.3 Post-Processing

We aim to utilise shape information to eliminate the false objects
from the classification results. To this end, we propose a two-step
post-processing method to achieve more reliable performance by
removing the outliers of the projection points in xz-plane and
taking the shape of the cleaned projection points into consideration.

We observe that the xz projection of the points representing
traffic signs and light poles are approximately rectangular shapes.
The projection of the points that belong to false objects (e.g. trees,
bridges, buildings, and vehicles on the road) usually does not
exhibit the rectangular shape. For example, the top row of Fig. 5
presents two kinds of regions obtained by Algorithm 2 (Fig. 3) for
a section. It is clear that the convex hull around the projected points
of a traffic sign is more likely to be a rectangle than the convex hull
around the projected points of a tree. We propose to use the shape

information of the objects to distinguish the ROIs from the false
objects. 

Since outlier points can be randomly located around each
object, they may make the overall convex hull of the projected
points to be non-rectangular. To address this issue, we propose the
modified seeded region growing algorithm to eliminate the outliers
around the object. We then use the rectangular shape information to
eliminate the false objects.

2.3.1 Modified seeded region growing: The seeded region
growing algorithm is conventionally considered as a region-based
segmentation method. It is a bottom-up procedure that starts with a
set of seed pixels in an image. The goal is to grow a uniform and
connected region from each seed. This method is extensively used
as a segmentation process so analysis of an image can be
automatically performed on the segmentation results.

In this work, we propose the modified seeded region growing
algorithm on the LiDAR data to group the potential object points
and eliminate the outlier points around a candidate object. The
modified seeded region growing method is able to robustly identify
the same potential object points and recognise the same outlier
points regardless of the initial selected seeds. It is also able to
quickly identify a different number of neighbours for each data
point based on its cloud density. At ci location of a candidate
cuboid in each section l, the points in TSl

(ci) may represent a traffic
sign object or a false object. Similarly, the points in LPl

(ci) may
represent a light pole object or a false object. Regardless of the
object types, there might be some outlier points around the objects.
To eliminate these outliers, we randomly select a seed point and
grow a uniform connected region from this seed. A point that has
not been assigned to any other region is added to the seeded region
if and only if the point is in the neighbour of the region and its
distance to the region is less than a predefined threshold.
Otherwise, the point will be a new seed for another region.

To do so, for each TSl
(ci) or LPl

(ci), we calculate its xz projection.
Any point in the xz plane is selected as the seed and its six nearest
neighbours, which can fit a local plane, are then selected. A
neighbour is added to the region containing the seed if its
Euclidean distance to the centroid of the region is <0.5 m and it has
not been assigned to any region. The algorithm continues to find
the six nearest neighbours of each of the added points and repeats
the same process to grow the region. When no neighbour can be
added to any existing region, the algorithm finds a point that has
not been assigned to any region as the seed and starts repeating the
same growing process. We save all the points identified in the
growing regions in a region list RLl

(ci). The algorithmic overview of
the proposed modified region growing algorithm for LiDAR data
points is presented in Algorithm 4 (see Fig. 6). 

2.3.2 False object removal: We propose to use the shape
information in the xz-plane to remove the points corresponding to
false objects. Specifically, we find the largest connected component
ObjRegion(ci) for points within each RLl

(ci). We then find the
minimum bounding box BoundingBox(ci) to cover ObjRegion(ci).

For the traffic sign class TSl
(ci), we find the convex hull

ConvexHull(ci) around the points in the corresponding
ObjRegion(ci). We then compute the ratio of the area of
BoundingBox(ci) to the area of ConvexHull(ci) to decide whether the
traffic sign class corresponds to the false objects. If the ratio is
larger than a predefined threshold (e.g. 0.7), it indicates that the
two areas are similar and therefore we consider ObjRegion(ci) as a
traffic sign. Otherwise, we consider ObjRegion(ci) as the false
object and remove it from the final results.

For the light pole class LPl
(ci), we calculate the ratio of the

length to the width of BoundingBox(ci). If this ratio is larger than a
predefined threshold (e.g. 5), it indicates that ObjRegion(ci) is a tall
rectangle and therefore we consider ObjRegion(ci) as a light pole.

Fig. 4  Algorithm 3: traffic sign and light pole classification
 

Fig. 5  Illustration of the results obtained by Algorithm 2 (Fig. 3) for two
sections
(a) Region that represents a part of the tree and its projection on the xz-plane together
with its convex hull shown in red, (b) Region that represents a traffic sign and its
projection on the xz-plane together with its convex hull shown in red
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Otherwise, we consider ObjRegion(ci) as the false object and
remove it from the final results.

The algorithmic view of the proposed false object removal is
provided in Algorithm 5 (see Fig. 7). 

3 Experimental results
We evaluate the performance of the proposed traffic sign and light
pole detection method by conducting various experiments on eight
MLS point clouds. These LiDAR point clouds are collected and
provided by the Utah Department of Transportation (UDOT). The
data for this study were collected by a vehicle with the following
equipment: Velodyne LiDAR sensor, laser road imaging system,
laser rut and crack measurement system, road surface profiler, and
position orientation system. Specifically, the data were collected on
eight different one-mile sections of the I-15 highway, which may
contain traffic signs, light poles, trees, bridges, billboards,
buildings, and so on. We denote the name of each dataset by a
three-digit number followed by a hyphen and another three-digit
number. The first three-digit number shows the starting milepost of
the I-15 highway and the second three-digit number shows the
ending milepost. The names of the dataset in our experiments are

304-305, 305-306, 258-259, 259-260, 261-262, 263-264, 247-248,
and 262-263, respectively. We manually select the ground truth of
the road points. The ground truth of the traffic signs and light poles
for each dataset is provided by UDOT experts. In this section, we
present original MLS point clouds for a segment of the datasets
304-305 and 305-306 and demonstrate the road extraction results
for four representative sections and the traffic sign and light pole
extraction results for eight representative sections by employing
the proposed method and its variant method without involving the
post-processing step. Furthermore, we summarise both qualitative
and quantitative results for all the eight datasets and compare the
proposed method with several state-of-the-art methods.

3.1 Results on the first dataset 304-305

The first dataset 304-305 corresponds to highway I-15 milepost
304 to 305, which is located in the south of Salt Lake City of Utah.
The direction of the road is from south to north. The area contains
high density of traffic signs, light poles, trees, bridges, buildings,
and billboards. The size of this MLS dataset is 157 MB. This
dataset contains more than 4.7 million points.

As discussed in Section 2, we divide the dataset into N = 24
sections and separately process each section and concatenate the
results of the sections to obtain the desired output. We empirically
decide the optimal number of sections based on the road detection
overlap score when utilising a different number of sections.
Adopting the similar metric introduced in [28, 29], the road
detection overlap score is computed as follows:

Overlap = Result ∩ GT
Result ∪ GT (7)

where ⋅  returns the number of elements in an array, ∩ is the
intersect operation, ∪ is the union operation, Result is the extracted
interest points (e.g. road points), and GT is the manually labelled
ground truth of interest points (e.g. road points).

We run the proposed road point extraction method using a
different number of sections (i.e. N = 2, 4, 8, 12, 16, 20, 24, 28, 32)
on the dataset 304-305 and calculate their corresponding road
detection overlap score. The minimum road detection overlap score
is 86.12% when N = 2 and the maximum road detection overlap
score is 87.12% when N = 24. It is clear from these experiments
that the number of sections does not significantly influence the
road detection overlap score. However, we can achieve the most
accurate road point extraction when setting N to be 24 for this
dataset. Qualitatively, we present the road extraction results in blue
on four sections of dataset 304-305 in Fig. 8 for N = 24. The
results show the robustness of the proposed method in extracting
the road points. However, several points such as some of the
vegetation part in the top-left plot of Fig. 8 and road curbs in the
bottom-left plot of Fig. 8 are incorrectly labelled as the road points
(i.e. false positive points) due to their similarity in terms of
altitude, intensity, and orientation. 

Fig. 6  Algorithm 4: modified seeded region growing algorithm
 

Fig. 7  Algorithm 5: false object removal
 

Fig. 8  Illustration of the road extraction results for four representative
segments 3, 5, 19, and 22 (in the raster scan order) of the dataset 304-305.
Each section is a portion of the dataset along the trajectory of the vehicles
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We compare the extracted traffic signs and light poles with the
ground truth of their counterparts to quantitatively evaluate the
performance of the proposed method and its variant method
without involving the post-processing step. There are 23 traffic
signs and 8 light poles in this section of the highway. Table 1 lists
the true positives (i.e. the number of correctly extracted traffic
signs and light poles) of the proposed method and its variant
method on the dataset 304-305. It also lists the false positives (i.e.
the number of incorrectly extracted traffic signs and light poles) of
the two compared methods. The table clearly shows that the
proposed method successfully extracts 21 (e.g. 91.30%) traffic
signs and eight (e.g. 100%) light poles and its variant method
successfully extracts 22 (e.g. 95.65%) traffic signs and eight (e.g.
100%) light poles. The proposed method extracts nine false objects
(i.e. nine objects are incorrectly extracted as true objects) while its

variant method extracts 25 false objects. It is clear that the two-step
post-processing method significantly reduces the false positive
rate. However, it also removes one correctly identified traffic sign
from the desired output. Since it is not desirable to have high false
positives and the post-processing step does keep a majority of the
correctly extracted traffic signs and light poles, we decide to
incorporate the post-processing step in the final proposed method.

We choose eight representative sections of the dataset 304-305
to qualitatively illustrate the traffic sign and light pole extraction
results of the proposed method (i.e. with employing post-
processing) and its variant method (i.e. without employing post-
processing). These eight sections contain a varied number of traffic
signs, light poles, and other objects such as billboard, poles,
bridges, and trees. Fig. 9 presents the extracted traffic signs in blue
and the extracted light poles in red on top of the original MLS

Table 1 True positives and false positives of the proposed traffic sign and light pole extraction method and its variant method
on the dataset 304-305
Ground truth Variant method Proposed method

Traffic sign Light poles Traffic signs Light poles False objects Traffic signs Light poles False objects
23 8 22 8 25 21 8 9

 

Fig. 9  Traffic sign and light pole extraction results respectively shown in blue and red obtained by the variant method and the proposed method for eight
representative sections of the dataset 304-305: Section 2 shown in (a) and (b), Section 3 shown in (c) and (d), Section 5 shown in (e) and (f), Section 8 shown
in (g) and (h), Section 13 shown in (i) and (j), Section 15 shown in (k) and (l), Section 19 shown in (m) and (n), Section 22 shown in (o) and (p)
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point clouds for the eight sections of the dataset 304-305. Figs. 9a
and b demonstrate the extraction results of the variant method and
the proposed method for section 2, respectively. It clearly shows
that both methods do not detect any non-target objects as target
objects when there is no traffic signs and light poles along the road.
Figs. 9c and d, respectively, demonstrate the extraction results of
the variant method and the proposed method for section 3. It
clearly shows that the variant method correctly detects one traffic
sign and one light pole. However, it also mistakenly detects the
billboard and some parts of trees at the right border of the road as
traffic signs. The proposed method effectively removes some parts
of trees from the extraction results. Figs. 9e and f present the
extraction results of the variant method and the proposed method
for section 5, respectively. It clearly shows that the variant method
correctly detects the traffic sign located at the left border of the
road and incorrectly detects some vegetation parts and two poles at
the right side of the road as traffic signs. The proposed method
effectively removes most of the tree parts and a pole at the right
border of the road from the traffic sign extracting results. Similarly,
the variant method accurately detects one traffic sign and one light
pole in section 8 as shown in Fig. 9g and two traffic signs and one
light pole in section 13 as shown in Fig. 9i. The proposed method
achieves the same extraction results for sections 8 and 13 as shown
in Figs. 9h and j, respectively. The variant method extracts one
light pole in section 15 as shown in Fig. 9k, one traffic sign in
section 19 as shown in Fig. 9m, and two traffic signs and one light
pole in section 22 as shown in Fig. 9o. However, it also detects few
false objects. For example, Fig. 9k shows that a part of the tree that
is located at the right top corner of the road is detected as a traffic
sign by mistake; Fig. 9m shows that some parts of the bridge are
mistakenly detected as a traffic sign; and Fig. 9o shows that some
part of the tree at the right border of the road and some parts of the
bridge are misclassified as traffic signs. Figs. 9l, n, and p
demonstrate the extraction results of the proposed method for the
same sections 15, 19, and 22, respectively. We observe that the
post-processing step effectively removes the parts of the bridge in
section 19, and some of vegetation parts and bridge parts in section
22. However, some false objects (e.g. mostly part of bridges and
billboards) are still present in the extraction results due to their
similarity to the traffic signs.

3.2 Results on the second dataset 305-306

The second dataset 305-306 corresponds to highway I-15 milepost
305 to 306, which is located in the south of Salt Lake City of Utah.

The direction of the road is from south to north. The area contains
high density of traffic signs, light poles, bridges, buildings, and
billboards. The size of this MLS dataset is 145 MB. This dataset
contains more than 4.3 million points.

We run the proposed road point extraction method using a
different number of sections (i.e. N = 2, 4, 8, 12, 16, 20, 24, 28, 32)
on the second dataset and calculate their corresponding road
detection overlap score. The minimum road detection overlap score
is 86.12% when N = 2 and the maximum road detection overlap
score is 86.27% when N = 24. Our extensive experimental results
on the other datasets also show that setting N = 24 usually
achieves the most accurate road point extraction results.
Qualitatively, we present the road extraction results in blue on four
sections of the dataset 305-306 in Fig. 10. The results show the
robustness of the proposed method in extracting the road points.
However, several points, such as a small part of the vegetation at
the right border of the road shown at the top row of Fig. 10 and a
part of vegetation shown at the bottom-left plot of Fig. 10, are
incorrectly labelled as the road points.

We compare the extracted traffic signs and light poles with the
ground truth of their counterparts to quantitatively evaluate the
performance of the proposed method and its variant method. There
are 18 traffic signs and 9 light poles in this section of the highway.
Table 2 lists both the true positives and the false positives of the
proposed method and its variant method on the dataset 305-306. It
clearly shows that the proposed method successfully extracts 16
(e.g. 88.89%) traffic signs and eight (e.g. 88.89%) light poles and
its variant method successfully extracts 17 (e.g. 94.44%) traffic
signs and eight (e.g. 88.89%) light poles. The proposed method
extracts three false objects while its variant method extracts seven
false objects. It is clear that the post-processing step reduces the
number of false positives and keeps the majority of the true
positives in the final extraction results. The traffic sign and light
pole extraction results on datasets 304-305 and 305-306
demonstrate that the proposed method works well by correctly
extracting almost all the target objects and obtaining fewer false
positives. 

Similar to the experimental results for the first dataset, we also
choose eight representative sections of the dataset 305-306 to
qualitatively illustrate the traffic sign and light pole extraction
results of the proposed method (i.e. with employing post-
processing) and its variant method (i.e. without employing post-
processing). Fig. 11 presents the extracted traffic signs in blue and
the extracted light poles in red on top of the original MLS point

Fig. 10  Illustration of the road extraction results for four representative segments 6, 7, 8, and 21 (in the raster scan order) of the dataset 305-306
 

Table 2 True positives and false positives of the proposed traffic sign and light pole extraction method and its variant method
on the dataset 305-306
Ground truth Variant method Proposed method

Traffic sign Light poles Traffic signs Light poles False objects Traffic signs Light poles False objects
18 9 17 8 7 16 8 3
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clouds for the eight sections of 305-306. These plots clearly
demonstrate that the variant method accurately extracts the light
pole in section 3 as shown in Fig. 11a, the traffic sign in section 6
as shown in Fig. 11c, and the light pole in section 7 as shown in
Fig. 11e, one traffic sign at the right border in section 8 as shown in
Fig. 11g, two traffic signs and one light pole in section 12 as shown
in Fig. 11i and section 15 as shown in Fig. 11k, and one traffic sign
and one light pole that are located at the left border of the highway
in section 19 as shown in Fig. 11m. However, it misidentifies a part
of the bridge shown in Figs. 11c, e, and g, and a part of a vehicle
on the road shown in Fig. 11o as traffic sign. It also misses a part of
the traffic sign in Figs. 11g and k since the missed traffic sign is not
located along the main road of the highway. The proposed method
achieves the same extraction results for sections 3, 12, 15, and 19
as it is shown in Figs. 11b, j, l, and n, respectively. We observe that
the post-processing step effectively removes some parts of the
bridge in Fig. 11c, all the bridge parts in Fig. 11e, a small part of
the bridge at the bottom right border of the road in Fig. 11g, and a
vehicle that is passing on the highway in Fig. 11o. However, some
false objects (e.g. mostly part of the trees) are still present in the
extraction results due to their similarity to the traffic signs.

3.3 Results on the other six datasets

To further evaluate the proposed method, we also conduct
experiments on the remaining six datasets. Each of these six
datasets contains the data along the one milepost of the highway
I-15. We empirically choose N to be 24 to divide each dataset into
24 segments since this choice achieves the best road point
extraction overlap score for all the six datasets.

Fig. 12 presents the final traffic sign and light pole extraction
results after employing the proposed method on the six datasets,
namely, 258-259, 259-260, 261-262, 262-263, 263-264, and
247-248. The traffic sign extraction results are plotted in blue and
the light pole extraction results are plotted in red on top of the
original MLS point clouds. Fig. 12a shows that the proposed
method correctly extracts all the 16 traffic signs with different sizes
that are located at the borders of the road in the dataset 258-259. It
detects two out of three light poles and mistakenly detects a part of
the bridge at the end of the road and a pole-like object at the
beginning of the road as a traffic sign. Fig. 12b shows that the
proposed method correctly detects 19 out of 20 traffic signs in the
dataset 259-260, which are located at the borders of the road. It
mistakenly detects the bridge that is located at the end of this
section as a traffic sign. Fig. 12c shows that the proposed method
detects 18 out of 20 traffic signs in the dataset 261-262. However,
it also detects three false objects as traffic signs. Two of these false

Fig. 11  Traffic sign and light pole extraction results respectively shown in blue and red obtained by the variant method and the proposed method for eight
representative sections of the dataset 305-306: Section 3 shown in (a) and (b), Section 6 shown in (c) and (d), Section 7 shown in (e) and (f), Section 8 shown
in (g) and (h), Section 12 shown in (i) and (j), Section 15 shown in (k) and (l), Section 19 shown in (m) and (n), Section 21 shown in (o) and (p)
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objects are the billboards that are located near the border of the
road and the other false object is a part of a bridge. Fig. 12d shows
that the proposed method successfully detects all the 22 traffic
signs and four out of five light poles in the dataset 262-263 and
wrongly detects three false objects (e.g. a billboard, an off-road
board, and a part of wires on top of the road) as traffic signs.
Fig. 12e shows that the proposed method is capable of detecting 18
out of 19 traffic signs and 11 out of 12 light poles in the dataset
263-264. It also detects six false objects. One of these false objects
is a flag pole that exhibits the same characteristics as a light pole.
Three of them are parts of trees and two are parts of bridges since
they show the same characteristics as the traffic signs. Fig. 12f
shows that the proposed method detects all seven traffic signs in

the dataset 247-248 and detects two parts of a bridge, a billboard,
and an off-road board by mistake. 

3.4 Overall quantitative results on eight datasets

We compare the extracted traffic signs and light poles with the
ground truth of their counterparts to quantitatively evaluate the
performance of the proposed method and its variant method.
Table 3 lists the ground truth and both the true positives and the
false positives of the proposed method and its variant method on all
eight datasets. It clearly shows that the proposed method
successfully extracts 137 (e.g. 94.48%) traffic signs and 33 (e.g.
89.19%) light poles and its variant method successfully extracts

Fig. 12  Illustration of traffic sign extraction results in blue and light pole extraction results in red after applying the proposed method on six datasets
(a) 258-259; (b) 259-260; (c) 261-262; (d) 262-263; (e) 263-264, (f) 247-248
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139 (e.g. 95.86%) traffic signs and 33 (e.g. 89.19%) light poles.
The proposed method incorrectly extracts 29 false objects while its
variant method incorrectly extracts 70 false objects. It is clear that
the proposed method detects most of the traffic signs and light
poles prosperously. Moreover, it significantly reduces the number
of false objects due to the use of the post-processing step. 

To further evaluate the proposed method, we provide the
confusion matrix along with six evaluation measures including the
number of missed objects, the number of false objects, recall
(detection rate), precision, quality [30], and F1-measure [31] in
Table 4. This confusion matrix shows that the proposed method
correctly classifies the traffic signs and light poles in their
corresponding classes. However, some false objects are predicted
as traffic signs or light poles mistakenly. The proposed method also
misses few objects (i.e. eight traffic signs and four light poles). The
average recall, precision, quality and F1-measure of traffic sign and
light pole extraction results are 91.84, 87.85, 81.31, and 89.68%,
respectively. 

In addition, we evaluate the running time of the proposed
method for the aforementioned eight datasets. The proposed
method is written in Matlab 2017(b) and the program is run on
Intel®-Core™ i7-3370 (3.4 GHz) system with 16 GB RAM.
Table 5 lists the number of MLS points and the approximate
running time in seconds for the proposed method on each of the
eight datasets. The average running time of the proposed method
for 4.423 × 106 MLS points is 191 s. 

Finally, we evaluate the effectiveness of the adaptive threshold
Θ (the threshold calculated in Algorithm 3 (see Fig. 4)), which is
used to classify each object candidate as a traffic sign or a light
pole. To evaluate the sensitivity of the proposed method to the
choices of threshold values, we manually select different values
and compute the precision and recall for traffic sign and light pole
classes. Specifically, we calculate the precision and recall values of
the traffic sign and light pole classes by using several fixed
thresholds 5, 10, 15, and 20 and the adaptive threshold Θ,
respectively. Table 6 demonstrates the effectiveness of the adaptive
threshold Θ. It clearly shows that the adaptive threshold
consistently achieves the best detection results when compared to
the fixed thresholds. On average, the proposed method improves
the method with the best threshold by 3.79% in precision and
4.62% in recall. The chosen adaptive threshold automatically
decides the optimal threshold, which works well on each dataset. 

3.5 Comparison with previous studies

Comparing the performance of the proposed method with the
performance of previous studies is challenging due to the
differences in datasets and the variation of the defined tasks.
Datasets can be different in terms of point clouds’ quality, density,
distribution, and the areas that the data is collected from. For
instance, one dataset can be a high-density MLS point clouds
collected from city areas while the other can be an airborne laser
scanning data collected from a highway. The detection and

Table 3 True positives and false positives of the proposed traffic sign and light pole extraction method and its variant method
on all the eight datasets
Dataset Ground truth Variant method Proposed method

Traffic sign Light pole Traffic sign Light pole False object Traffic sign Light pole False object
258-259 16 3 16 2 4 16 2 2
259-260 20 0 19 0 3 19 0 1
261-262 20 0 18 0 6 18 0 3
262-263 22 5 22 4 6 22 4 3
263-264 19 12 18 11 12 18 11 5
247-248 7 0 7 0 7 7 0 3
304-305 23 8 22 8 25 21 8 9
305-306 18 9 17 8 7 16 8 3
Total 145 37 139 33 70 137 33 29
 

Table 4 Confusion matrix along with six evaluation measures for each of the two classes in all eight datasets
Predicted

Traffic sign Light pole
Actual Traffic sign 137 0

Light pole 0 33
missed objects 8 4
false objects 26 3
recall 94.48% 89.19%
precision 84.04% 91.67%
quality 80.11% 82.50%
F1-measure 88.95% 90.41%

 

Table 5 Running time of the proposed method on each of eight datasets
Dataset Number of points Time in seconds
259-260 4.568 × 106 185
261-262 4.364 × 106 192
262-263 4.160 × 106 183
263-264 4.453 × 106 201
247-248 4.726 × 106 184
304-305 4.730 × 106 220
306-306 4.393 × 106 192
Average 4.423 × 106 191
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classification tasks are also not identical in different works. For
instance, the objective in one work can be detection of lamp posts
and pole-like objects while the objective in another work can be
detection of traffic signs and pedestrians. Despite these challenges,
we aim to demonstrate the performance of the proposed traffic sign
and light pole detection method in comparison with the previous
studies. To do so, we only include the object detection studies of
street areas that use MLS point clouds and report the recall and
precision of their targeted classes.

When comparing traffic sign extraction results, the proposed
method is comparable with the three methods proposed in [8, 12,
32]. In [32], the authors only report the recall rate of 65% and the
precision rate of 58% for 60 traffic signs. The method proposed in
[8] achieves the recall of 60.81% and the precision of 95.74%.
Specifically, out of the 74 traffic signs in their dataset, it correctly
detects 45 traffic signs, mistakenly classifies 24 traffic signs to
other classes, misses the remaining 5 traffic signs, and mis-detects
2 objects as traffic signs. Lehtomäki et al. [12] report the recall of
65.96% and the precision of 93.94%. Specifically, out of the 94
traffic signs in their dataset, their method correctly detects 62
traffic signs, erroneously classifies 11 traffic signs to other classes,
misses the remaining 21 traffic signs, and incorrectly detects 4
objects as traffic signs. Our proposed method achieves 94.48%
recall and 84.04% precision. Specifically, out of the 145 traffic
signs, it correctly detects 137 of them and misses only 8 of them. It
does not classify the traffic signs to other classes. However, it mis-
detects 26 objects as traffic signs. The proposed method achieves a
higher precision rate than the method proposed in [32] and the
highest recall rate among the other three methods. Overall, it
achieves the best traffic sign detection performance in terms of
recall and precision. Table 7 summarises the precision and recall
rates for four aforementioned traffic sign detection methods. 

Different studies focus on different types of light poles. For
example, the tasks in [8, 12, 32, 33] are to detect the standard light
poles or lamp posts in city areas while the task in our study is to
detect the light poles along the highway areas. The standard light
poles in city areas usually have lower elevation than the ones in
highway areas. Due to this difference, we compare the proposed
method with the previous studies by comparing recall and precision

rates. Golovinskiy et al. [32] only report the recall rate of 62% and
the precision rate of 45% for 51 light poles. The method proposed
in [33] achieves the recall rate of 82% and the precision rate of
72% for 73 light poles. The method proposed in [8] achieves
86.87% recall and 89.58% precision. Specifically, it correctly
detects 86 of 99 pole objects, mistakenly classifies 5 of them to
other classes, misses the remaining 8 pole objects, and mis-detects
10 objects as pole objects. The method proposed in [12] achieves
the recall rate of 80.49% and the precision rate of 94.29% for lamp
posts. Specifically, it detects 33 of 41 lamp posts correctly,
classifies one of them incorrectly to another class, misses 7 of
them, and detects 2 false objects as lamp posts. The proposed
method achieves the recall rate of 89.19% and correctly detects 33
out of 37 light poles. It mis-detects three false objects as light poles
and does not classify the light poles to the other classes. It achieves
the second highest precision rate of 91.67% and the highest recall
rate among the other four previous methods. Overall, it achieves
the best light pole detection performance among the four compared
previous methods. Table 8 summarises the precision and recall
rates for five aforementioned light pole detection methods. 

In summary, the proposed method is able to simultaneously
detect both traffic signs and light poles in the MLS data. It achieves
the best overall recall and precision rates in detecting both traffic
signs and light poles when comparing with three traffic sign
detection methods and four light pole detection methods.
Furthermore, it achieves the highest recall rate in detecting both
traffic signs and light poles. It achieves the second best precision
rate in detecting light poles and a comparable precision rate in
detecting traffic signs due to misclassification of several false
objects as the target objects.

4 Conclusions
In this paper, we propose a fast and reliable traffic sign and light
pole detection method, which can be applied to the MLS data to
quickly identify various traffic signs and light poles. A set of
experiments have been carried out on the eight datasets that are
captured by UDOT along the I-15 highway. The extensive
experimental results demonstrate that the proposed method is able
to successfully detect 137 (e.g. 94.48%) traffic signs and 33 (e.g.
89.19%) light poles in the eight datasets. In other words, the
proposed method is robust in detecting almost all the traffic signs
and light poles with few number of false positives.

Our contributions are: (i) employing the surface reconstruction
algorithm to extract the orientation of the points as one of the
characteristic features; (ii) applying the unsupervised k-means
clustering algorithm to automatically extract road points; (iii)
designing a sliding cuboid to search for the high elevated objects
above or beside the roads as groups of candidate points; (iv)
employing the RANSAC algorithm to select the robust candidate
points that represent planes along the vehicle trajectory; (v)
proposing a modified seeded region growing algorithm to remove
the outlier points around the objects; (vi) introducing a shaped-
based false object rejection algorithm to remove the false positive
objects.

In the future, we will improve the performance of the proposed
method by designing an efficient image segmentation algorithm to
identify the traffic signs and light poles with less computational
time and more accuracy. We may consider incorporating de-noising
techniques in the pre-processing step to further improve the
segmentation results. We will utilise other information such as

Table 6 Evaluation of the proposed method using different classification thresholds
Threshold Traffic sign Light pole Average

Precision, % Recall, % Precision, % Recall, % Precision, % Recall, %
5 78.57 68.27 42.18 72.97 60.37 70.62
10 82.06 82.06 51.66 83.78 66.86 82.92
15 81.76 89.65 83.78 83.78 82.77 86.71
20 81.06 94.48 88.23 81.08 84.64 87.78
Θ 84.04 94.48 91.67 89.19 87.85 91.84

 

Table 7 Summary of precision and recall rates for four
traffic sign detection methods
Compared methods Precision rate, % Recall rate, %
[32] 58.00 65.00
[8] 95.74 60.81
[12] 93.94 65.96
proposed 84.04 94.48
The highest precision and recall are shown in bold.

 

Table 8 Summary of precision and recall rates for five light
pole detection methods
Compared methods Precision rate, % Recall rate, %
[32] 45.00 62.00
[33] 72.00 82.00
[8] 89.58 86.87
[12] 94.29 80.49
proposed 91.67 89.19
The highest precision and recall are shown in bold.
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colour and texture to remove more false objects to improve the
precision rate.

5 Acknowledgment
The study was sponsored by Utah Department of Transportation
(UDOT). The views expressed are those of the authors and do not
reflect the official policy or position of the project's sponsor.

6 References
[1] Hernández, J., Marcotegui, B.: ‘Point cloud segmentation towards urban

ground modeling’. Urban Remote Sensing Event, Shanghai, China, 2009, pp.
1–5

[2] Zhu, X., Zhao, H., Liu, Y., et al.: ‘Segmentation and classification of range
image from an intelligent vehicle in urban environment’. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS), Taipei, Taiwan, 2010, pp. 1457–1462

[3] Douillard, B., Underwood, J., Kuntz, N., et al.: ‘On the segmentation of 3D
LiDAR point clouds’. IEEE Int. Conf. Robotics and Automation (ICRA),
Shanghai, China, 2011, pp. 2798–2805

[4] Lin, C.H., Chen, J.Y., Su, P.L., et al.: ‘Eigen-feature analysis of weighted
covariance matrices for LiDAR point cloud classification’, ISPRS J.
Photogramm. Remote Sens., 2014, 94, pp. 70–79

[5] Soheilian, B., Paparoditis, N., Vallet, B.: ‘Detection and 3d reconstruction of
traffic signs from multiple view color images’, ISPRS J. Photogramm. Remote
Sens., 2013, 77, pp. 1–20

[6] Adam, A., Ioannidis, C.: ‘Automatic road sign detecion and classification
based on support vector machines and hog descriptors’, ISPRS Ann.
Photogramm. Remote Sens. Spat. Inf. Sci., 2014, 2, (5), p. 1

[7] Khalid, S., Muhammad, N., Sharif, M.: ‘Automatic measurement of the traffic
sign with digital segmentation and recognition’, IET Intell. Transp. Syst.,
2018

[8] Pu, S., Rutzinger, M., Vosselman, G., et al.: ‘Recognizing basic structures
from mobile laser scanning data for road inventory studies’, ISPRS J.
Photogramm. Remote Sens., 2011, 66, (6), pp. S28–S39

[9] Yokoyama, H., Date, H., Kanai, S., et al.: ‘Detection and classification of
pole-like objects from mobile laser scanning data of urban environments’, Int.
J. CAD/CAM, 2013, 13, (2), pp. 31–40

[10] Yu, Y., Li, J., Guan, H., et al.: ‘Automated extraction of urban road facilities
using mobile laser scanning data’, IEEE Trans. Intell. Transp. Syst., 2015, 16,
(4), pp. 2167–2181

[11] Riveiro, B., Díaz Vilariño, L., Conde Carnero, B., et al.: ‘Automatic
segmentation and shape-based classification of retro-reflective traffic signs
from mobile LiDAR data’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,
2016, 9, (1), pp. 295–303

[12] Lehtomäki, M., Jaakkola, A., Hyyppä, J., et al.: ‘Object classification and
recognition from mobile laser scanning point clouds in a road environment’,
IEEE Trans. Geosci. Remote Sens., 2016, 54, (2), pp. 1226–1239

[13] El Halawany, S.I., Lichti, D.D.: ‘Detection of road Poles from mobile
terrestrial laser scanner point cloud’. 2011 Int. Workshop on Multi-Platform/
Multi-Sensor Remote Sensing and Mapping (M2RSM), Xiamen, China, 2011,
pp. 1–6

[14] Zhang, K., Zuo, W., Chen, Y., et al.: ‘Beyond a Gaussian denoiser: residual
learning of deep cnn for image denoising’, IEEE Trans. Image Process., 2017,
26, (7), pp. 3142–3155

[15] Muhammad, N., Bibi, N., Jahangir, A., et al.: ‘Image denoising with norm
weighted fusion estimators’, Pattern Anal. Appl., 2017, 21, (4), pp. 1013–
1022

[16] Hoppe, H., DeRose, T., Duchamp, T., et al.: ‘Surface reconstruction from
unorganized points’, vol. 26 (ACM, USA, 1992)

[17] Arthur, D., Vassilvitskii, S.: ‘k-means++: the advantages of careful seeding’.
Proc. Eighteenth Annual ACM-SIAM Symp. Discrete Algorithms, New
Orleans, LA, USA, 2007, pp. 1027–1035

[18] Torr, P.H., Zisserman, A.: ‘Mlesac: a new robust estimator with application to
estimating image geometry’, Comput. Vis. Image Underst., 2000, 78, (1), pp.
138–156

[19] Krizhevsky, A., Sutskever, I., Hinton, G.E.: ‘Imagenet classification with deep
convolutional neural networks’. Advances in Neural Information Processing
Systems, Lake Tahoe, NV, USA, 2012, pp. 1097–1105

[20] He, K., Zhang, X., Ren, S., et al.: ‘Deep residual learning for image
recognition’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las
Vegas, NV, USA, 2016, pp. 770–778

[21] Qi, C.R., Su, H., Mo, K., et al.: ‘Pointnet: deep learning on point sets for 3d
classification and segmentation’. Proc. Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI, USA, 2017

[22] Mahjoub, H.N., Tahmasbi Sarvestani, A., Kazemi, H., et al.: ‘A learning-
based framework for two-dimensional vehicle maneuver prediction over v2v
networks’. IEEE 15th Int. Dependable, Autonomic and Secure Computing,
15th Int. Conf. Pervasive Intelligence & Computing, 3rd Int. Conf. Big Data
Intelligence and Computing and Cyber Science and Technology Congress
(DASC/PiCom/DataCom/CyberSciTech), 2017, Orlando, FL, USA, 2017, pp.
156–163

[23] Akram, T., Laurent, B., Naqvi, S.R., et al.: ‘A deep heterogeneous feature
fusion approach for automatic land-use classification’, Inf. Sci., 2018, 467, pp.
199–218

[24] Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for
largescale image recognition’, Proc. Int. Conf. on Learning Representation,
San Diego, CA, USA, 2015

[25] Russakovsky, O., Deng, J., Su, H., et al.: ‘Imagenet large scale visual
recognition challenge’, Int. J. Comput. Vision (IJCV), 2015, 115, (3), pp. 211–
252

[26] Everingham, M., Eslami, S.A., Van Gool, L., et al.: ‘The pascal visual object
classes challenge: a retrospective’, Int. J. Comput. Vis., 2015, 111, (1), pp. 98–
136

[27] Yi, L., Kim, V.G., Ceylan, D., et al.: ‘A scalable active framework for region
annotation in 3D shape collections’, ACM Trans. Graph., 2016, 35, (6), p. 210

[28] Wu, Y., Lim, J., Yang, M.H.: ‘Online object tracking: a benchmark’. Proc.
IEEE Conf. Computer Vision and Pattern Recognition, Portland, OR, USA,
2013, pp. 2411–2418

[29] Wu, Y., Lim, J., Yang, M.H.: ‘Object tracking benchmark’, IEEE Trans.
Pattern Anal. Mach. Intell., 2015, 37, (9), pp. 1834–1848

[30] Rutzinger, M., Rottensteiner, F., Pfeifer, N.: ‘A comparison of evaluation
techniques for building extraction from airborne laser scanning’, IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens., 2009, 2, (1), pp. 11–20

[31] Guan, H., Li, J., Yu, Y., et al.: ‘Using mobile laser scanning data for
automated extraction of road markings’, ISPRS J. Photogramm. Remote Sens.,
2014, 87, pp. 93–107

[32] Golovinskiy, A., Kim, V.G., Funkhouser, T.: ‘Shape-based recognition of 3d
point clouds in urban environments’. IEEE 12th Int. Conf. Computer Vision,
Kyoto, Japan, 2009, pp. 2154–2161

[33] Velizhev, A., Shapovalov, R., Schindler, K.: ‘Implicit shape models for object
detection in 3D point clouds’. Int. Society of Photogrammetry and Remote
Sensing Congress, Melbourne, Australia, 2012, vol. 2

IET Intell. Transp. Syst., 2019, Vol. 13 Iss. 5, pp. 803-815
© The Institution of Engineering and Technology 2018

815

Authorized licensed use limited to: Utah State University. Downloaded on July 03,2020 at 23:07:38 UTC from IEEE Xplore.  Restrictions apply. 


