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Abstract

One of the primary challenges of visual tracking is the variable appearance of the target
object. As tracking proceeds, the target object can change its appearance due to illumi-
nation changes, rotations, deformations etc. Modern trackers incorporate online updating
to learn how the target changes over time. However, they do not use the history of target
appearance. To address this shortcoming, we uniquely use domain adaptation with the
target appearance history to efficiently learn a temporally matching filter (TMF) during
online updating. This TMF emphasizes the persistent features found in different
appearances of the target object. It also improves the classification accuracy of the
convolutional neural network by assisting the training of the classification layers without
incurring the runtime overhead of updating the convolutional layers. Extensive experi-
mental results demonstrate that the proposed TMF-based tracker, which incorporates
domain adaptation with the target appearance history, improves tracking performance on
three benchmark video databases (OTB-50, OTB-100 and VOT2016) over other online
learning trackers. Specifically, it improves the overlap success of VITAL and MDNet by
0.44 % and 1.03 % on the OTB-100 dataset and improves the accuracy of VITAL and

1 | INTRODUCTION

One of the primary challenges of visual tracking is the change
in target appearance over time. For example, a car may change
its colour when moving from an area of shadow to light. A
bicyclist may change their otrientation when performing a flip.
A dancer may deform when they change the position of their
limbs. A person may be partially or fully occluded when
moving behind a truck. Figure 1 shows examples of occlusion
and deformation. These appearance changes may have an
impact on the features used by a tracking algorithm and
therefore may confuse the tracker and lead to tracking failure.

Trackers built on convolutional neural networks (CNNs)
are widely used to handle changes in target appearance. In a
basic CNN tracker, a series of convolutional layers extract the
features of the target object. Fully connected (FC) layers then
classify the features from the last convolutional layer as either
the target or background. Earlier, CNN trackers are static
because the model does not change during tracking. Recent
CNN trackers add an update phase to adjust the classification
layers as the appearance of the target object changes.

MDNet by 0.55 % and 0.06 % on the VOT2016 dataset, respectively.

Five representative CNN-based trackers including SO-
DLT [1], CNN-SVM [2], MDNet [3], DSiam [4] and AVA [5]
achieve improved tracking results on challenging tracking
benchmarks. However, SO-DLT, CNN-SVM and MDNet
have two major shortcomings. First, they only update the FC
layers since it is time-consuming to learn CNN filters, which
require updating millions of parameters in the convolutional
layers. Second, they do not make full use of the target's known
history to learn the potential future target appearance. As an
example, a tracker may update its model at the moment the
target has rotated in the image plane. The model may then fail
to propetly consider the appearance 30 frames further on when
the object returns to its original orientation. To address these
shortcomings, DSiam updates the target template each frame
by assuming that the target variation is temporally smooth.
However, this assumption is not guaranteed to hold in all cases.
In addition, DSiam does not use knowledge of the past
appearance of the target in the future when an appearance that
the target may take on again. AVA utilizes adversarial learning
to decrease the gap between the distributions of targets'
appearance during tracking. However, training an adversarial
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FIGURE 1
green boxes are the ground truth bounding boxes

network may lead to more computational time due to the in-
crease in model parameters.

Other tracking techniques use deep features extracted from
convolutional layers to improve handling of appearance vari-
ation. One representative tracker is DSAR-CF [6], which
combines the weight map with a saliency map to dynamically
update the weight map in the correlation filter to reflect the
current target appearance. Similarly, the target history is not
used to learn the range of appearances the target object can
take.

Domain adaptation, also known as transfer learning, has
been an ongoing research topic in the field of computer vision.
It applies a model trained on one dataset for a particular
task to different tasks involving different datasets [7].
Specifically, it considers the original dataset as the source
domain and the new dataset as the target domain. To date,
domain adaptation has shown promising results in different
areas of computer vision such as image classification and object
recognition, as summarized in [8—10]. To the best of our
knowledge, domain adaptation has not been applied in visual
tracking,

We uniquely incorporate domain adaptation in a CNN-
based tracker to learn a temporally matching filter (TMF) to
capture the persistent features of the target appearance history.
The proposed temporally matching filter tracker (TMFT)
emphasizes the features that are consistent in the target
appearance history for improved training. It also improves the
generalization of the classification layers by highlighting the
important features of target candidates during tracking. Our
extensive experiments on three challenging benchmark datasets
demonstrate that TMFT achieves results competitive with
state-of-the-art trackers, while avoiding the runtime cost of

Examples of target appearance changes when people occlude the target person (top row) and the bicycle and rider deform (bottom row). The

updating the convolutional layers. The major contributions of
the proposed TMFT are:

® [carning a TMF that highlights the persistent features of the
appearance of target candidates during tracking,

® Improving the model generalization of the CNN by
increasing similarities of the target candidates over time.

® Designing an end-to-end CNN that simultaneously learns
the TMF for target regions and the discriminative features
for target detection.

® Incorporating domain adaptation into the online update
process to improve the training of the classification layers
and the classification accuracy.

® Organizing the feature history of the object into source and
target domains for domain adaptation.

The remainder of this study is organized as follows: Sec-
tion 2 discusses recent related research in feature filters and
domain adaptation. Section 3 presents the proposed TMFT
from the perspectives of network architecture, filter learning,
network training and implementation. Section 4 presents the
experimental setup and the results on OTB-50, OTB-100 and
VOT2016 tracking benchmarks. Section 5 draws the conclu-
sion and discusses the future work.

2 | RELATED WORK

In this section, we discuss recent research that is closely related
to ours. We focus on reviewing two key research techniques
that are used in the proposed TMFT. They are feature filters
and domain adaptation.
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2.1 | Feature filters

Some trackers use feature filters, also called feature masks, as
part of their learning process. Song et al. [11] develop VITAL,
which uses a generative adversarial network (GAN) to generate
weight masks for identifying features that remain consistent
over time. VITAL achieves a tracking accuracy of 0.682 on the
OTB-100 dataset by avoiding overfitting with temporary
features. However, VITAL may lose features that are impor-
tant, but seem temporary since the full target history is not
involved in updating.

Pu et al. [12] propose a deep attentive tracking (DAT)
method to use attention maps to improve tracking perfor-
mance. A backpropagation step is added to calculate the
attention maps to capture important features of the object. It
utilizes the derivatives from the first layer to provide per-pixel
importance for detecting the target. A function of the attention
map is then used as part of the online update loss function.
However, the attention maps are not learnt from the target
history, which captures the appearance of objects over time.

Han et al. [13] learn occlusion masks to make the classi-
fication layers more robust to object occlusion. The mask has
binary values, where 0 indicates the presence of occlusion and
1 indicates no occlusion. Multiplying the occlusion mask with
the features leads to the simulation of occlusion by cancelling
certain features. However, this method may inadvertently
remove discriminative features, even if the target object is
never occluded in the sequence. It also does not use the target
history when learning the occlusion maps.

All these feature filter-based trackers achieve better
tracking accuracy by using a mask to weigh features from a
different perspective. These masks make detection-based
trackers more robust to appearance changes. However, they do
not incorporate the feature history to learn discriminative
features to represent the changing appearances of the object
over time.

2.2 | Domain adaptation

Domain adaptation has been widely incorporated into the
learning process in different computer vision tasks. Here, we
domain  adaptation-based

review several

methods.

representative

Ganin and Lempitsky [9] pioneer learning by merging
unsupervised domain adaptation with deep learning to recog-
nize objects. They train a CNN to extract features that are not
only the same in both source and target domains but also are
discriminative for object recognition. However, the source
domain model may extract features not present in the target
domain since the source domain can contain classes not found
in the target domain. Such features are detrimental to the target
domain network as they can cause the network to incorrectly
classify an object. To address this shortcoming, Cao et al. [§]
develop a partial adversarial domain adaptation (PADA)
method to mitigate the influence of these features by down
weighting the information specific to the nonexistent classes.

Gaidon and Vig [14] develop an ODAMOT tracker by
using online domain adaptation to track multiple objects of the
same class. This adaptation occurs via sharing features of
tracked objects since they belong to the same class. However, it
does not learn the changing features resulting from the
changing appearance of the object.

Two kinds of domain adaptation can be used in the
updating process of the tracker. The first is to use a model
trained for a different purpose, such as object recognition or
image classification, to build the learner. It can take as little as
30 min to perform offline updating of the model compared to
days or weeks to train a model from scratch. Representative
trackers include MDNet [3] and its variants such as real-time
MDNet [15] and DAT [12], where MDNet uses VGG-M as a
base model and updates it with samples from a common visual
tracking benchmark. The second kind of domain adaptation
occurs during online updating. However, little research has
been reported on applying domain adaptation to online
updating during visual tracking,

3 | PROPOSED METHOD

We describe the proposed tracking algorithm in detail in this
section. First, we present the CNN architecture and explain the
functionality of each layer. Second, we describe the TMF and
how it is learnt online with domain adaptation. Third, we
describe in more detail the entire online update process and
how the TMF is used in this process. Finally, we provide the
implementation details.

3.1 | Network architecture

The proposed TMFT uses a CNN architecture to learn the
persistent features of the target over time to improve classifi-
cation accuracy. Building on the same network implemented in
MDNet [3], we add two branches after the third convolutional
layer. The first branch includes two new FC layers, FC7 and
FCS8, followed by a gradient reverse layer (GRL). The second
branch contains a new filter application (FA) layer followed by
FC4, FC5 and FC6 from MDNet. Figure 2 presents the pro-
posed network, where solid arrows show the feed forward path
and dotted arrows show the backpropagation path. For better
interpretation, we colour the convolutional layers, which
extract features, ved. We colour the first branch, which learns
the TMFs, green. We colour the second branch, which is
responsible for classifying candidates as the target object or the
background, yellow. We also include the output dimensions of
each CNN layer.

The first branch learns the TMFs online to capture the
persistent features of the object. To this end, we organize the
appearance history of the object into source and target do-
mains for domain adaptation. TMFT feeds the divided data to
three convolutional layers to extract their feature maps, which
are further sent forward through FC7 and FC8 to obtain
the TMFs. The GRL assists with learning the TMFs by
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FIGURE 2 Opverview of the proposed network (best viewed in colour)

negating the gradients of FC7 and FC8 during the back-
propagation process. It passes the TMFs through unmodified
during the feed forward process.

The second branch classifies the candidate as the target
object or the background. To this end, the TMFs go through
the FA layer to compute the scaled feature maps for different
representations of the target object. The scaled feature maps
give more weight to features present in the target object
undergoing appearance changes. TMFT passes the scaled
features to FC layers 4 through 6 to classify the candidate
samples as the target object or the background.

3.2 | Filter learning

We use domain adaptation to learn the TMFs, which scale the
feature maps generated by the third convolutional layer. Spe-
cifically, we organize the feature history of the object into
source and target domain datasets. We consider features of the
target object early in the history as the source domain and
features of the target object later in the history as the target
domain. In other words, we exclusively use the features of the
target object, which are positive, to create the history.

Initially, the positive feature history contains features
extracted from the first frame. During the pretraining step,
TMFT collects features from 500 random samples that overlap
the ground truth bounding box with an ovetlap ratio greater
than or equal to 0.7. During tracking, features are added to the
history for every frame in which the target object is success-
fully located. If TMFT fails to locate the target object, the
feature history is not updated. Location failure occurs when
the network output is below a predetermined threshold score
(i.e. 0). For each such frame, features from 50 random samples,
with ground truth overlap values greater than or equal to 0.7,
are extracted and appended to the history. The feature history
is a queue with a maximum capacity specified as a number of
frames. Before features from a new frame are enqueued,
features from an old frame at the head of the queue must be
dequeued when the feature history reaches the maximum
capacity. This is done to avoid filling memory, which would
considerably slow the tracker.

This positive feature history is used to learn the TMFs
requited for updating the CNN. The model is updated after
every 10 frames to ensure that a sufficient number of positive
training features are collected for learning. We consider this
update as a long-term update. When an update occurs after
frame F, where ¢ is a multiple of 10, we have a history of

(@)

(b)

(c)

FIGURE 3 Construction of the positive feature history. (a) Positive
feature history after pre-training on frame 1. (b) Positive feature history
during the first long-term update after frame 10. (c) Positive feature history
during the second long-term update after frame 20

features X = {Xx;, Xp, ..., Xn} that represent the changing
target appearance. Here, N is the number of features in the
history. Before updating the CNN, we divide the positive
feature history into two disjoint subsets: soutce domain dataset
Xs and target domain dataset X, where Xs = {x1, X2, ...,
X%} and Xt = {X%+17X%+2, sy XN

Figure 3 is a simple example to illustrate the accumulated
positive features in the history queue. For easy interpretation,
the diagram shows four random samples extracted from the
first frame, instead of 500 random samples as implemented in
TMFT. It shows two random samples extracted from the
successfully tracked frames, instead of 50 random samples as
implemented in TMFT. The history capacity for this example is
12 frames. The source domain dataset consists of the features
shown in blue and the target domain dataset consists of the
features shown in red. It should be noted that the features in
the two domain datasets may come from the same frame only
when the features in the first frame are present in the history,
as shown in Figure 3(b). Once the features in the first frame are
removed from the history, the features in the source domain
and the target domain are exclusively extracted from different
frames, as shown in Figure 3(c).

We input features from the source and target domain
datasets to the CNN to calculate their corresponding TMFs.
Each of these filters is generated by FC8 and is a 3 X3 matrix,
whose size is dictated by the feature maps generated by the
third convolutional layer, as shown in Figure 2. The values in
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the TMFs are unbounded. As a result, we use a sigmoid
function to transform the values to the range [0, 1].

In the proposed CNN, we use conventional binary cross-
entropy (BCE) to compute the filter loss, Ly for a single TMFf
as follows:

Ly(F.7) = =Xzflogfy + (1= z)log(1£;). (1)

This loss is a summation of the BCE for each element ﬁ-]- in
filter f, whete i € {1, 2, 3} and j € {1, 2, 3} specify the filtet's
row number and column number, respectively. zris the domain
label, where zr = 0 for the source domain and zy =1 for the
target domain. These label values follow the convention
established by [9] to perform the classification task. The total
filter loss is the average of the loss for all NTMFs, which is
computed by:

1
N,

M=

Ly = L(fn,zr). (2)

1

Unlike conventional training, which teaches a CNN to
produce different output for input data of different classes by
minimizing the loss, we use domain adaptation to learn to
produce identical filters for input data of different domains by
maximizing the loss in Equation (2). Since maximization
problems are more difficult to solve than minimization prob-
lems, we turn the maximization problem into a minimization
problem by negating the gradients [9]. Specifically, we use the
GRL from PADA [8] to allow the TMF to pass through
unmodified in the forward direction. During backpropagation,
the GRL assists with learning the TMFs by negating the gra-
dients of FC7 and FC8. To this end, the GRL first computes
an adaptive gradient scale factor as a function of the current
training iteration Z as follows:

GRL(i) = -1 (?(f:—l,) —(h-0+ l) : (3)

where [ is the maximum number of iterations, » and [ are real
positive values and respectively represent the high and low
bounds of the scalat's magnitude, a is a predefined parameter
to control how quickly the function reaches the minimum
value —h, and 1 is a predefined scaling factor. This adaptive
gradient scale factor is in the range of (—h, —I). In the pro-
posed CNN, we empirically determine the optimal GRL
parameters and set them as follows: b = 1, [ = 0, I = 200,
a =10 and 4 = 1. These parameters reduce Equation (3) to:

GRL(i) = (1 -- fe_z%). (4)

The GRL then negates and scales the gradients using the
adaptive gradient scale factor by:
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Figure 4 shows the empirically determined GRL function
for 200 iterations. It demonstrates that the gradient scalar is
reduced during the first 50 iterations and approaches an
asymptote at —1 near iteration 100. The magnitude of the
adaptive gradient scale factor ensures that a larger update oc-
curs in later training iterations.

3.3 | Network training

Learning the TMFs is a crucial component of the overall online
update process. This process can be summarized as (1) accu-
mulate positive and negative features during tracking; (2)
perform short-term updates when tracking fails and (3)
perform regularly scheduled long-term updates.

In addition to generating the positive feature history to
learn the TMFs, we also extract negative features when TMEFT
locates the target object. TMFT extracts features from 5000
negative samples during the pretraining step and extracts
features from 200 negative samples in each tracked frame. For
the pretraining step, negative samples are defined as those that
have an overlap ratio with the ground truth less than or equal
to 0.5. For tracked frames, the overlap ratio threshold is low-
ered to 0.3. These are the threshold values used in MDNet, our
experimental baseline. We use the same two thresholds in
TMFT to ensure fair comparison between TMFT and MDNet.

A short-term update occurs when the tracker fails to locate
the object. It performs normal feed forward and back-
propagation to update FC4, FC5 and FC6. The data flows
from FC4 to FC6 without using TMFs. The classification loss
is calculated and used to update the FC layers.

A long-term update occurs every 10 frames to learn the
TMFs using the positive feature history and improve classifi-
cation accuracy using both positive and negative samples. The
classification learning process is similar to the short-term up-
date process. The difference between the long-term and short-
term updates is the positive inputs to FC4; during the long-
term update, the inputs are the TMF scaled features. At the
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beginning of a long-term update, we generate a 3x3 TMFf
for each 3 x 3 X 512 feature map X. The FA layer uses fto
scale X by:

tracking

FMXJ){X (6)

Xi,j,/e X fz] training

The subsctipts 7 and j specify row and column positions in
the filter fand the feature map X, respectively. The subscript &
represents the depth of X. During tracking, the FA passes the
feature map through to the classification layer FC4. The TMF is
not used during tracking since the classification layers have
already learnt which features are discriminative for different
appearances of the target object. During online training, the FA
uses the TMFfto perform element-wise multiplication with the
feature map X at each depth plane to obtain the scaled feature
map. Small TMF values de-emphasize the importance of fea-
tures and large TMF values magnify the importance of features
in the feature map. Layers FC4, FC5 and FC6 then use the scaled
feature map to classify the sample as the target object or the
background. Finally, the classification loss is calculated.

We use BCE to calculate the classification loss for a single
sample. The total classification loss is the average classification
loss of all samples computed by:

1 M
LC = _M El ymlogpm + (1 _ym)log(l _pm)’ (7)

whete M is the number of positive and negative samples, p,,, is
the probability for the mth sample to be the target object and
Ym is the ground truth class label for the mth sample, with
Ym = 0 when the mth sample is the background and y,, = 1
when the mth sample is the target object.

We combine the total classification loss with the total filter
loss to compute the overall network loss:

L=Lc+Le. (8)

Since Ly is a constant with respect to FC4-FCG, the filter
loss derivatives for those layers are 0's. In other words, layers
FC4-FC6 do not contribute to the filter loss. As a result, we
can sum the loss values before backpropagation.

The filter loss Ly is calculated only for the positive samples
in the positive feature history. The classification loss is calcu-
lated for both positive and negative samples. The overall
network loss seamlessly combines the two branches in the
proposed CNN and ensures that training the classification
branch and the filter branch occurs simultaneously. This
simultaneous learning is necessary since the TMF's improve the
classification results and the reduced classification errors are
fed back into the CNN to learn the TMFs that better represent
the persistent features. At this point, the overall network loss
is backpropagated and all FC layers are updated. This back-
propagation does not affect the FA layer since no weights are
involved in the FA layer. It should be emphasized that the

features are only scaled during long-term updates to learn
the persistent features of the target object over time. The
scaled feature map is not used during tracking or short-term
updates.

Algorithm 1 summarizes the long-term update process.
The network uses batch training, where a batch size of 32 is
chosen for positive target data and a batch size of 96 is chosen
for negative background data. These two batch sizes are shown
to be effective in achieving good tracking results in MDNet
and therefore are used in TMFT, which also facilitates fair
comparison with MDNet when evaluating the tracking per-
formance. Half of the positive batch is from the source domain
and the other half is from the target domain. During each
training phase, TMFT randomly permutes the features in each
domain and ensures that each sample's feature map is used
exactly once.

Algorithm 1 Long-term online update

Input: CNN
Positive features X+
Negative features X~
Output: Updated CNN
1 Divide X" into X{ and X}
2 foreach training batch do
// Filter Forwarding
3 Feed forward X{ batch; output filters fg
4 Peed forward X, batch; output filters fr
Calculate filter loss Ly
//Classification Forwarding
Feed forward X{ batch with filters fg
Feed forward X, batch with filters f;
Feed forward X~ batch
Calculate classification loss L¢
//Optimization
10 L« L+ Lg
11  Backpropagate
12 Update layers FC4-FC8
13 end

w

O 00 1 &

3.4 | Implementation
We implement the proposed TMFT on top of the Python
implementation of MDNet [3], which serves as our experi-
mental baseline. Layers FC7, FC8 and GRL are implemented
as a separate PyTorch network.

The positive feature history capacity is 100 frames. When
the history is full, the difference between the source and target
ranges from 10 to 1000 frames. The last frame in the source
and the first frame in the target have the smallest distance of 10
frames. The first frame in the source and the last frame in the
target have the largest distance of 1000 frames. Due to the
significant differences between the source and the target,
domain adaption can be effectively used to learn how the target
appearance varies with time. Each update phase is limited to
200 training iterations. TMFT uses stochastic gradient descent
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to update the FC layers' weights. The momentum is 0.9 and the
weight decay is 0.0005. The learning rate for FCG6 is 0.01 and
the learning rate for all the other layers is 0.001. All these
parameters, except the training iterations, are set to the same
values reported by Nam and Han, the authors of MDNet [3].

4 | EXPERIMENTS

We run tracking experiments using the OTB one pass evalu-
ation protocol [16] and the VOT evaluation protocol [17] for
OTB and VOT datasets, respectively. The two datasets contain
different sequences and the two protocols report different
evaluation measurements, which provide a more thorough
evaluation of the compared trackers and help us gain more
insight into the performance of each tracker. Specifically, we
provide a detailed performance analysis of TMFT and its two
peer trackers, MDNet and VITAL. Both TMFT and VITAL
improve MDNet by adding feature filters as part of their
learning process. VITAL uses a GAN to generate weight
masks for identifying features that remain consistent over time.
TMFT uses domain adaptation during online updating to leatn
a TMF that emphasises the consistent features in the target
appearance history. For all experiments, we use the newly
released MDNet model trained on ImageNet-Vid [18] instead
of the original MDNet model trained on a subset of OTB and
VOT sequences to build the proposed CNN architecture.
ImageNet-Vid consists of sequences not found in VOT or
OTB so any testing bias from the original MDNet is avoided in
the evaluation. We run experiments on a Dell Precision Mobile
Workstation with 12 CPU cores, 32 GB of RAM and an
NVIDIA QuadroP1000 GPU. The GPU has 512 CUDA cotes
and 4 GB of RAM.

41 | OTB expetiments

The OTB benchmark consists of two datasets: OTB-100 [19]
and OTB-50 [16]. OTB-100 has 100 sequences with axis-
aligned ground truth bounding box annotations. Fach
sequence has tags denoting 11 applicable tracking challenges
including fast motion, background clutter, motion blur,
deformation, illumination variation, in-plane rotation, low
resolution, occlusion, out-of-plane rotation, out-of-view and
scale variation. OTB-50 is a precursor to OTB-100. It consists
of 50 sequences with axis-aligned ground truth bounding
boxes.

For the OTB experiments, we compare TMFT with 25
state-of-the-art trackers including DSST [20], KCF [21], TGPR
[22], MEEM [23], MUSTer [24], LCT [25], RSST [26], SRDCF
[27], SiamFC [28], DeepSRDCF [29], ADNet [30], CFNet [31],
SGLST [32], SCT [33], CNN-SVM [2], CCOT [34], ECO [35],
MDNet [3], VITAL [11], CREST [36], TRACA [37], SiamRPN
[38], STAPLE [39], CNT [40] and HDT [41]. We use two
common performance metrics, namely, overlap success and
centre error precision, to evaluate the performance of each
tracker. Overlap success is a measurement of how much the

tracker's bounding box overlaps with the ground truth
bounding box. It is a ratio of the boxes' intersection to their
union. Centre error precision is a measurement of the distance
between the centre of the tracket's bounding box and the
centre of the ground truth bounding box.

41.1 | OTB-100

Figure 5 shows overlap success and centre error precision
plots for the overall OTB-100 experiments. For easy
reading and clarity, we only present the top 10 trackers for
each subplot. Figure 5 demonstrates that ECO achieves the
best overlap success score of 0.691 and TMFT achieves the
second best overlap success score of 0.685 for the OTB-
100 dataset. TMFT improves VITAL (the third best
tracker) and MDNet (the fourth best tracker) by 0.44 %
and 1.03% in overlap success scores, respectively. Figure 5
also illustrates the superior performance of TMFT in terms
of centre error precision. TMEFT achieves the best centre
error precision score of 0.928 and VITAL achieves the
second best centre error precision score of 0.917 for the
OTB-100 dataset.

Figure 6 shows overlap success plots for the six appear-
ance-based challenges. Specifically, TMFT consistently ranks as
one of the top three trackers for these challenges. It yields the
best tracking performance when the target deforms or rotates
in the image plane. It outperforms its two peers when the
target is occluded or undergoes out-of-plane rotations or
motion blurs. It performs better than MDNet in all challenge
subsets except for the fast motion subset. Overall, TMFT
performs well for six appearance change-based challenges such
as deformation, illumination variation, in-plane rotation,
occlusion, out-of-plane rotation and out-of-view. It also
performs better than MDNet and VITAL in six and four
appearance change-based challenges, respectively.

Specifically, it consistently ranks as one of the top three
trackers for all 11 challenge subsets except for out-of-view
subset. Figure 7 shows centre error precision plots for the six
appearance-based challenges. Specifically, TMFT consistently
ranks as one of the top three trackers for these challenges,
except out-of-view, for which TMFT ranks fourth. It achieves
the best centre error precision when the target undergoes
motion blur, deformation, illumination variation, in-plane
rotation, out-of-plane rotation or scale variation. Overall, it
ranks the best for four of six appearance change-based chal-
lenges: deformation, illumination variation, in-plane rotation
and out-of-plane rotation. It outperforms MDNet for the two
remaining appearance change-based challenges (i.e. occlusion
and out-of-view) and outperforms VITAL for occlusion.

412 | OTB-50

Figure 8 presents the overall overlap success and centre error
precision plots of the top 10 trackers for all sequences in the
OTB-50 dataset. TMFT ranks fourth in terms of overlap
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FIGURE 6 Opverlap success plots of top 10 trackers for the OTB-100 dataset

success, where its score is decreased by 0.56 % when compared
to VITAL (the best tracker) and by 0.28 % when compared to
MDNet (the third best tracker). TMFT achieves the best centre
precision of 0.953, which improves on VITAL's precision by
0.32 % and MDNet's precision by 0.53 %.

4.2 | VOT experiments

We evaluate the performance of TMFT on the VOT2016
[42] and VOT2018 [43] datasets. Each dataset consists of 60
sequences, 50 of which are shared between VOT2016 and
VOT2018. The datasets also contain bounding box anno-
tations, where bounding boxes are not axis aligned. The

VOT datasets also contain challenge tags for each frame
instead of challenge tags for each sequence as in the OTB
dataset.

The VOT protocol uses accuracy, robustness and expected
average overlap (EAO) [42] as the measurements to evaluate
tracking performance. Accuracy is the overlap between the
tracker's bounding box and the ground truth bounding box
averaged over all frames. This metric has a value in the range
[0, 1] with 1 indicating perfect tracking. Robustness is a mea-
sure of how many times the tracker loses the target object with
smaller values indicating the tracker loses the target fewer
times. EAO is a prediction of how well the tracker would
perform on other sequences with similar attributes and of
similar length as the sequences in the dataset. Similar to
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accuracy, EAO is an overlap ratio. However, it does not include
resets when the tracker loses the target object. The EAO score
will be lower than the accuracy score when a tracker loses the
target object. A higher EAO score indicates better tracking
performance. We refer interested readers to [44] for complete
details on how EAO is calculated.
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We compare the proposed TMFT with four trackers including
CCOT [34], ECO [35], MDNet [3] and VITAL [11], whose
experimental results on the VOT2016 dataset are publicly
available. These four compared trackers are also the top trackers
for the OTB-100 dataset. Table 1 summarizes the VOT2016
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TABLE 1 VOT2016 tracking results of five trackers

Tracker Accuracy Robustness EAO

TMFT 0.5439 10.2333 0.3753
MDNet 0.5436 16.9333 0.2579
VITAL 0.5409 16.5000 0.3228
ECO 0.5390 10.8333 0.3738
ccor 0.5322 14.0000 0.3294

tracking results using the VOT protocol. The best performance
is shown in red and the second best performance is shown in
blue. 1t is clear that TMFT outperforms all four other trackers in
terms of all three measurements by achieving the highest average
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TABLE 2 VOT2018 tracking results of seven trackers

Tracker Accuracy Robustness EAO
TMFT 0.534 1.507 0.227
MDNet 0.514 1.996 0.187
VITAL 0.530 1.718 0.219
ECO 0.484 0.276 0.280
CCOT 0.494 0.318 0.267
LADCF 0.503 0.159 0.389
MFT 0.505 0.140 0.385
SiamRPN 0.586 0.276 0.383

accuracy of 0.5439, the best robustness of 10.2333 and the best
EAO score of 0.3753. ECO achieves the second best perfor-
mance in terms of robustness and EAO and MDNet achieve the
second best performance in terms of accuracy. TMFT signifi-
cantly improves its two peer trackers in robustness and EAO
measurements. Specifically, it improves the robustness of VI-
TAL and MDNet by 37.98 % and 39.56 %, and the EAO score
of VITAL and MDNet by 16.26 % and 45.52 %, respectively. It
improves the accuracy of its peer trackers by a small margin of
0.55 % for VITAL and 0.06 % for MDNet.

Figure 9 shows the accuracy versus robustness plot and the
EAO plot of the five compared trackers for the VOT2016
dataset. It is clear that TMFT is the most robust and accurate
tracker among the four compared trackers. Based on the EAO
measurement, TMFT is expected to outperform the other four
trackers in real-world tracking scenarios.

422 | VOT2018

Table 2 summarizes the VOT2018 tracking results of TMFT
and seven state-of-the-art trackers. Three of these trackers,
namely, LADCF [45], MFT [46] and SiamRPN [38], are top
performing trackers for the VOT2018 dataset. MDNet and
VITAL are TMFT's peer trackers and ECO and CCOT ate two
top performing trackers for both OTB-100 and VOT2016

datasets. We use 7ed to indicate the best performance and blue
to indicate the second best performance.

It is clear that TMFT achieves the second best accuracy
score of 0.534 and improves the accuracy of its two peer trackers
by a small margin of 0.75 % for VITAL and 3.89 % for MDNet.

It also significantly improves its two peer trackers in both
robustness and EAO measurements. Specifically, it improves
the robustness of VITAL and MDNet by 12.28% and
24.50 %, and the EAO score of VITAL and MDNet by 3.65 %
and 21.39 %, respectively.

4.3 | Speed analysis

We evaluate the average tracking frequencies of TMFT and its
two peers on the VOT2018 dataset to compare their tracking
speed. Average tracking frequencies are 1.2054 frames per
second (fps) for TMFT, 1.3458 fps for VITAL and 1.3616 fps
for MDNet.

This evaluation result concurs with our expectation that
TMFT should run slower than its peer trackers (MDNet and
VITAL) since layers FC7 and FC8 introduce additional 2304
parameters, which are updated every 10 frames with each
training iteration at the long-term update stage, to perform the
domain adaptation learning task.

4.4 | Qualitative results

Figures 10-14 demonstrate sample qualitative tracking results
of five compared trackers on five OTB sequences: Bolt,
MountainBike, Crowds, Freeman4 and Birdl, respectively.
These sequences represent the gamut of tracking challenges
identified in the OTB dataset. In each frame, a white + marks
the ground truth centre. We cropped the frames to show only
the target and all bounding boxes.

All five trackers are able to track the objects in Bol,
MountainBike and Crowds, where the object deforms in Bolt
and MountainBike and the person moves from bright sun to
shadow and passes through some background clutter in the
form of other people in Crowds. Consistent features learnt
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FIGURE 10 Qualitative evaluation of TMFT, CCOT [34], ECO [35], MDNet [3] and VITAL [11] on the OTB sequence, Bolt

FIGURE 11

Qualitative evaluation of TMFT, CCOT [34], ECO [35], MDNet [3] and VITAL [11] on the OTB sequence, MountainBike

FIGURE 14 Qualitative evaluation of TMFT, CCOT [34], ECO [35], MDNet [3] and VITAL [11] on the OTB sequence, Bird1

from TMFT mitigate the drift seen in the other trackers. As a
result, TMFT is able to more accurately locate the object with
respect to the ground truth centres. The primary challenge in
both Freeman4 and Birdl is occlusion. TMFT is able to
remember the appearance of the occluded object when the
occlusion ends due to its use of the feature history. For
example, all the trackers drift by different offsets for the
Freeman4 sequence when the person is occluded. TMFT is the
tracker that is able to most accurately relocate the person when
he is revealed. For the Bird1 sequence, TMFT is able to quickly
recover and relocate the bird even when everything is obscured
by a cloud for a period. Two trackers, CCOT and ECO, fail to
track the bird in the BirdI sequence and have trouble tracking
the petson in the Freeman4 sequence.

These tracking results show the effectiveness of TMFT
over the other trackers. Since ECO and CCOT do not attempt

to learn how the features change with time, they fail to track
objects that change their appearances. VITAL uses an adver-
sarial learning approach to learn appearance changes over time.
However, it does not accurately track each object as the pro-
posed TMFT does probably due to not using the full history.
TMFT makes use of the history of the target appearance to
learn a TMF to capture persistent features, which allow it to
better locate the target objects in all sample sequences.

5 | CONCLUSIONS AND FUTURE
WORK

We propose a tracker, named TMFT, which organizes the
target object's feature history into source and target domains
and incorporates domain adaptation into the online learning
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process of visual tracking. TMFT allows the use of the positive
feature history to learn a TMF, which captures persistent
features as the target object's appearance changes over time.
The TMF trains the CNN to focus on similar object features
over time to improve the model generalization. TMFT is
implemented as an end-to-end CNN that learns the TMF
when learning the discriminative features of the target object at
the same time. Experimental results on the OTB-100 dataset
demonstrate that TMFT outperforms 25 state-of-the-art
trackers with a centre error precision of 0.928 and outperforms
25 state-of-the-art trackers except for ECO with an overlap
success of 0.685. Experimental results on the VOT2016
dataset demonstrate that TMFT outperforms four compared
trackers with accuracy of 0.5439, robustness of 10.2333 and
EAO of 0.3753. These results also reinforce the findings of
[8, 9] to show that online learning with domain adaptation is
applicable to the field of visual tracking.

In the future, we will study the effect of the adaptive
gradient scale factor on tracking performance and empirically
derive an appropriate equation to produce an optimal gradient
scale factor for tracking, We will also study different weighting
schemes to combine the classification and filter loss functions.
We will further investigate better strategies to divide the history
into source and target domains and investigate different stra-
tegies to improve run-time performance without degrading
tracking performance.
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