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Abstract—Deep neural network-based 3D object detection in
LiDAR point clouds has achieved excellent performance in vari-
ous applications including autonomous driving and robot vision.
However, achieving high accuracy in real-time is paramount in
time-critical applications. We propose a real-time Hierarchical
Soft Attention Network (HSAN) to employ soft attention in
the backbone of the original network to increase the detection
accuracy without slowing down its inference speed. The proposed
HSAN applies a hierarchical structure on the baseline network
to combine features at different scales to obtain rich and fine-
grained information and utilizes the characteristic of a layered
attention structure to give more attention to the correct regions
of target objects. Our proposed system improves the baseline
network and achieves comparable detection results in terms of
detection accuracy and inference speed when compared with peer
state-of-the-art systems on the KITTI validation 3D detection
benchmark.

I. INTRODUCTION

Point cloud object detection has recently gained increasing
attention in the computer vision community with the popular-
ity of LiDAR sensors and their widespread applications in au-
tonomous driving, robotic vision, and other fields. Deep Neural
Network (DNN) based 3D object detection methods have made
tremendous progress towards point cloud object detection
compared to traditional machine learning-based methods. Two
kinds of pioneer work include voxel-based and point-based 3D
object detectors. Due to the importance of high efficiency for
real-time systems and the space limitation, inefficient point-
based methods will not be discussed here.

Voxel-based 3D object detectors, which process voxels
transformed from the original point cloud, have been widely
used to detect objects due to their fast inference and train-
ing speed. They can be broadly classified into two cate-
gories: single-shot methods and region proposal-based meth-
ods. Single-shot methods [1], [2], [3] incorporate only one
stage to directly detect objects, while region proposal-based
methods [4] contain two stages, namely, a pre-processing stage
and a refinement stage, to detect accurate objects. Although
single-shot methods are less accurate than region proposal-
based methods, they are more efficient and are widely applied
in real-time systems.

Although the aforementioned voxel-based 3D object de-
tectors achieve superior detection performance, a few main
issues including the rapid growth of the point cloud size [5]
and the loss of geometric information [6] remain unsolved. In

order to alleviate these problems, the attention mechanism is
introduced in the DNN to focus on important parts of the input
data and simplify the point cloud to capture sufficient feature
representation [7]. Attention can be roughly divided into two
categories: hard attention and soft attention. Due to random
sampling around local feature regions, hard attention is non-
differentiable and cannot be embedded into the network for
convergence learning. On the contrary, soft attention assigns
weights to global features or whole image regions. Thus, it
is differentiable and can be broadly used in back-propagation
methods to detect 3D objects. Classical soft attention, which
has three inputs including query, keys, and values, is applied in
natural language processing [8]. SA-Det3D [9] then utilizes its
mechanism to improve the performance of 3D object detection.
Other soft attentions are also widely applied in the computer
vision community. For instance, Li et al. [10] employ Max-
Pool, AvgPool, and tanh activation functions in a soft attention
module CBAM to extract edges and detect small objects.
Paigwar et al. [11] extend the soft attention mechanism to
enable the network to crop smaller regions containing objects
of interest, engender the number of points to be processed, and
reduce the inference time. However, cropping local areas might
lead to error accumulation. Liu et al. [12] introduce TANet
consisting of channel, point, and voxel-level soft attentions to
capture fine-grained features and improve the capability and
robustness of fine-grained pedestrian detection.

In this paper, we propose a Hierarchical Soft Attention
Network (HSAN) to address common drawbacks of single-
shot 3D object detection methods, namely, lack of geometric
information and combined features at different layers. HSAN
consists of a Hierarchical Soft Attention (HSA) module and a
network skeleton, which can be the network of any voxel-
based single-shot methods. In this research, we use two
versions of SECOND, namely, SECOND with a small network
and SECOND with a large network, as our backbone to build
the HSAN, respectively. To improve the inference speed, we
also remove 50% of the parameters of the last 3D convolu-
tional layer [13] in both versions of SECOND to simplify
the DNN structure. The HSA module aims to help DNN to
make clearer and more robust judgments on object recognition
by combining features of different scales and paying more
attention to correct areas of interest. To this end, the HSA
module transforms the input into a weighted feature map that
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contains semantic relationships between features from multiple
scales to highlight critical features of objects for detection
and suppress spatially irrelevant features from the background.
Unlike the classical attention mechanism [8], [9] where three
inputs and the scaled dot-product operation are involved, the
soft attention in the proposed HSA module involves one
input and the addition operation to combine low and high-
level convolved image feature maps. Furthermore, it differs
from other types of soft attention from multiple perspectives.
For example, the proposed HSA employs convolution and
sigmoid operations as its basic structure while CBAM [10]
employs MaxPool, AvgPool, and tanh activation functions
as its basic structure. The proposed HSA keeps the whole
point cloud to prevent the omission of key information while
Attentional-PointNet [11] crops the small regions of interest.
The proposed HSA utilizes voxel-level attention on different
scales of features to capture fine-grained features while TANet
[12] involves a triple attention to capture fine-grained features.

Our contributions are summarized as follows:
• Proposing a HSAN with a HSA module to incorporate

features at different scales to improve detection accuracy
of the SECOND network.

• Utilizing the features generated from the HSA module to
learn and find the most important locations to focus on
and filter out the irrelevant parts of the input point cloud.

• Improving the baseline network and achieving similar
accuracy and inference speed comparing with one-stage
state-of-the-art systems on the KITTI validation dataset.

• Deploying the HSA model in other voxel-based networks
to improve 3D object detection performance.

II. HIERARCHICAL SOFT ATTENTION NETWORK

In this section, we present the overall structure of the
proposed HSAN and the details of the HSA module.

A. Overview

Fig. 1 shows the overall architecture of the proposed HSAN,
which uses the widely used small SECOND network as its
backbone to maintain the detection accuracy with a faster
speed. SECOND is an effective 3D object detection system
achieving a high accuracy with a fast speed. It first divides
the input point cloud data into voxels of the same size for
pre-processing. It then converts a certain number of points in
each voxel into a vector of voxel features and coordinates to
maintain geometric and spatial information. These vectors are
next sent to 3D convolution blocks to expand their receptive
fields. The 3D voxel features are reshaped into a Bird’s-Eye-
View (BEV) shape and sent to a 2D convolution block to
obtain 2D features. Finally, the 2D features are put into box
regression and classification branches to localize and classify
detected objects, respectively.

To improve the efficiency and accuracy of SECOND, we use
its small network as backbone and modify this simple network
structure from two perspectives. First, we cut 50% of the
parameters of the last layer of 3D sparse convolutional layers
to simplify the 3D convolutional block, speed up the training,

and maintain the efficiency. Second, we include the HSA
module in 2D convolutional blocks to improve the accuracy
of SECOND. Specifically, the HSA module learns the most
important positions in the point cloud data, filters out the
irrelevant parts, and combines feature maps of different scales
to more accurately represent objects.

The section below the block diagram of Fig. 1 presents the
details of employing the proposed HSA module at two places
in the 2D backbone network, which consists of two layers of
encoding and decoding blocks. The encoding block at each
layer contains six convolutional layers and the decoding block
at each layer contains one deconvolutional layer. We use X
to denote SECOND’s 2D BEV features, which is the input of
the 2D backbone network. We first employ the soft-attention
module on X to calculate semantic relationships among voxels
and obtain its weighted feature map Y1 at the first layer. This
weighted feature map Y1 then goes through the encoding block
of the first layer to obtain EY1, whose channel number is
reduced by half from Ch to Ch/2. EY1 goes through two
branches: one branch is to go through the decoding block of
the first layer to obtain DY1, which has the same dimension
as X; the other branch is to employ the soft-attention module
on EY1 to calculate semantic relationships among voxels and
obtain its weighted feature map Y2 at the second layer. This
weighted feature map Y2 goes through the encoding block of
the second layer to obtain EY2, whose channel is doubled
from Ch/2 to Ch and whose height and width are reduced
from H to H/2 and from W to W/2, respectively. EY2

finally goes through the decoding block of the second layer
to obtain DY2, which has the same dimension as X . Lastly,
DY1 and DY2 are concatenated together as the output of the
2D backbone network. This hierarchical structure combines
features at different scales, enhances semantic information, and
broadens the receptive field.

B. Hierarchical Soft Attention (HSA) Module

The HSA module is composed of two soft attention blocks.
Each block has the same soft attention mechanism, which
forms two control gate mask branches: one going through
two convolutional layers and one going through one convo-
lutional layer. Fig. 2 demonstrates the proposed soft attention
block. Here, we use W to represent the 2D convolutional
layer weights and the subscript of W to represent specific
convolutional layers. Specifically, WX , WXY , and WY rep-
resent convolutional layer weights of the convolutional layer
connecting feature X and its convolved feature (i.e., Xconv),
features X and Y , and feature Y and its convolved feature
(i.e., Yconv), respectively. For the input of the 2D convolutional
networks (e.g., a given BEV feature map X), we use two
branches of 1×1 convolutions WX and WXY to transform X
into two new feature maps Xconv and Y with the same dimen-
sion, respectively. We then employ another 1× 1 convolution
WY to transform Y into Yconv with the same dimensions.
We combine Xconv and Yconv via the elementwise addition
and apply another 1 × 1 convolution WS , which represents
convolutional layer weights of the convolutional layer after the
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Fig. 1. The overall architecture of the proposed HSAN. The upper part demonstrates its block diagram, where HSA modules reside in the 2D backbone
network shown in blue shade. The lower part presents the flowchart of employing the HSA module in the 2D backbone network.

Fig. 2. Illustration of the proposed soft attention block.

addition operation, to transform the combined feature map into
a new feature map. The sigmoid operation is then employed
on the new feature map to normalize it into a new weighted
feature map A. The feature map Y is elementwisely multiplied
with A, added with itself and concatenated with input X to
obtain the final weighted feature map.

The proposed HSA module allows the control gate to
perform pixel-to-pixel modeling (i.e., voxel-wise addition or
element-wise addition of local features) to make the focused
and related resources be assigned to the most intrinsic and
informative areas. In other words, the control gate branches
function as a masking mechanism to recalibrate local features
from multiple scales and selectively strengthen valuable and
informative areas and suppress useless and non-informative
features such as noise and background. As a result, the values

in the attention mask represent the weights of corresponding
pixels on the original feature maps of point clouds, which
make the attention mask more suitable for pixel-wise classi-
fication than global pooling. In summary, the proposed HSA
module not only selects the most intrinsic and discriminative
features toward the classification objective in the feed-forward
process but also prevents the updating of parameters with
incorrect gradients during backpropagation [14]. It further
makes our network more expressive, robust, and informative.

We also design two variant soft attentions for comparison.
The variant 1 intuitively applies the soft attention on the
original input feature map X to enhance target objects and
filter out irrelevant areas in X . Its final weighted feature map is
obtained by adding X and its multiplication with the weighted
feature map A. The variant 2 applies the soft attention on the
high-level feature map Y to enhance target objects, filter out
irrelevant areas in Y , and learn more deformations of target
objects. Its final weighted feature map is obtained by adding
Y and its multiplication with A. The proposed HSAN takes
the advantage of both variants to simultaneously consider both
low and high-level feature maps, which contain rich and fine
context information, by concatenating X with the final feature
map obtained from the variant 2. These three soft attentions are
employed at the same two places in the 2D backbone network
to construct their counterpart HSAs.

C. Design and Mathematical Formulation of HSA

We treat X and Yconv shown in Fig. 2 as low-level features
of layer L and high-level features of layer L + 2 in the
encoding stage, respectively. Xconv and Y are considered as
high-level features of layer L + 1. To improve the network
sensitivity, we design our soft attention block based on additive
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attention since it experimentally has higher accuracy than
multiplicative attention [15]. To this end, we calculate the soft
attention mask A at layer L by performing an elementwise
addition operation between Xconv and Yconv to learn critical
features of objects. This attention mask A integrates the
relationship between features from multiple scales or layers at
different regions, focuses on useful regions, and indicates the
significance of different regions. We then perform an elemen-
twise multiplication operation between A and Y to identify
relevant regions containing objects. Finally, we employ the
addition [14] to retain original features, so the final output
of the soft attention block is defined as Y + Y ◦ A, where
◦ represents the elementwise multiplication. The following
equation summarizes the steps to compute the soft attention
mask A at layer L, where concatenation is not involved:

AL = Sigmoid(Ws ⋆ (WX ⋆ XL +WY ⋆ WXY ⋆ XL))

Here, XL ∈ RHL∗WL∗ChL

are features at layer L with H ,
W , and Ch being its respective height, width, and channel
number, ⋆ represents the conventional convolution operation,
and WX ,WY ,WXY , and WS ∈ RChL∗ChL∗k∗k are convolu-
tional filters, whose kernel size is k × k (i.e., k = 1), used at
different layers L to generate features at the next layers. The
proposed soft attention block functions as a feature selector
to automatically augment useful structure features during the
forward process by replacing XL with the weighted attention
features Ŷ L concatenating with XL. In summary, the final
output of the variant 1, the variant 2, and the proposed soft
attention block is X +X ◦A, Y + Y ◦A, and concatenation
of X and Y + Y ◦A, respectively.

The proposed soft attention block and its two variants can
be applied to multiple layers to form an HSA module. In our
implementation, we apply it to two layers, as shown in Fig. 1,
to build an HSA module to integrate the relationship between
features from multiple scales. As a result, the HSA enables
the DNN to focus on useful areas and salient features and be
more robust against big objects such as cars and cyclists.

III. EXPERIMENTS

We extensively evaluate the proposed one-stage HSAN on
the KITTI dataset [16], which is a novel challenging real-
world computer vision benchmark captured by driving around
the mid-size city Karlsruhe, its rural areas, and its highways.
The dataset contains images, videos, 3D point clouds, and their
Global Positioning System (GPS) locations. In this research,
we focus on the KITTI 3D point cloud dataset, which has
7,481 training and 7,518 testing point clouds in three cat-
egories (e.g., cars, pedestrians, and cyclists). Each category
has point clouds with three difficulty levels including easy,
moderate, and hard based on bounding box height, occlusion,
and truncation levels. The height of the bounding box of
objects at easy, moderate, and hard difficulty levels is at
least 40, 25, and 25 pixels, respectively. The occlusion of the
objects at easy, moderate, and hard difficulty levels is fully
visible, partly occluded, and hard to see, respectively. The
truncated percentage of objects at easy, moderate, and hard

difficulty levels is at most 15%, 30%, and 50%, respectively.
Objects that do not satisfy the above requirements (e.g., 6,473
cars, 170 pedestrians, and 165 cyclists) are not used for
training and validation. In total, the KITTI dataset contains
17,823 easy objects including 13,067 cars, 3,694 pedestrians,
and 1,062 cyclists, 9,547 moderate objects including 8,602
cars, 563 pedestrians, and 382 cyclists, and 678 hard objects
including 600 cars, 60 pedestrians, and 18 cyclists. We divide
the training data into training and validation split with 3,712
and 3,769 point clouds, respectively.

We employ Average Precision (AP) over 11 recall positions
as the metric to evaluate the 3D object detection results in
the validation split. Different IoU thresholds are empirically
determined by other researchers to compute AP. An IoU of 0.7
is commonly used for cars and an IoU of 0.5 is commonly used
for cyclists and pedestrians. The leaderboard rank is based on
the results of the dataset at the moderate level.

A. Experiment I

Table I lists the AP of the proposed HSAN with a small
SECOND network, the proposed HSAN with a large SEC-
OND network, and ten peer one-stage voxel-based 3D object
detectors, namely, SECOND with a small network, SECOND
with a large network, TANet [12], Voxel-FPN [3], SA-SSD
[17], SE-SSD [18], CenterNet3D-SL1 [19], Pointpillars [20],
SCNet [21], and AFDet [22], on the KITTI car validation
dataset. It shows that HSAN with a large SECOND network
achieves better car detection results than HSAN with a small
SECOND network at three difficulty levels. It ranks the best
in detecting cars at easy and hard levels and the third in
detecting cars at the moderate level. Table II lists the AP of
HSAN with a small SECOND network, HSAN with a large
SECOND network, and three peer 3D object detectors (e.g.,
VoxelNet [1], TANet [12], and Voxel-FPN [3]) on the KITTI
cyclist validation dataset. Since seven peer detectors listed in
Table I do not provide the cyclist AP on the KITTI validation
dataset, we only compare the detection results of three peer
systems in Table II. This table shows that HSAN with a large
SECOND network achieves the best performance on cyclists
at moderate and hard levels and the second best performance
at the easy level. In the following, we will compare the car
detection performance of HSAN and several detectors in terms
of detection accuracy, detection speed, and ablation studies.

1) Comparison with SE-SSD and SA-SSD, two best car
detectors at the moderate level in terms of accuracy: Table I
shows that SE-SSD, SA-SSD, HSAN with a large SECOND
network, and HSAN with a small SECOND network rank the
top four 3D car detectors at the moderate level with detection
rates of 85.71%, 79.79%, 78.77%, and 78.31%, respectively.
HSAN with a large SECOND network has the highest 3D car
detection rate of 88.98% and 77.27% for easy and hard levels,
respectively. It improves the second best car detectors SA-SSD
at the easy level by 0.26% and HSAN with a small SECOND
network at the hard level by 1.06%. However, SE-SSD has
a more complex training process than HSAN. Its training
process iteratively updates the teacher and student SSDs,

2931

Authorized licensed use limited to: Utah State University. Downloaded on January 10,2023 at 18:56:30 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
COMPARISON OF AP(%) OF 12 METHODS ON CARS.

3D Detector Easy Moderate Hard FPS
SECOND (small network) 85.5 75.04 68.78 40
SECOND (large network) 87.43 76.48 69.1 25

TANet 88.21 77.85 75.62 29
Voxel-FPN 88.27 77.86 75.84 50

SA-SSD 88.75 79.79 74.16 25
SE-SSD N/A 85.71 N/A 32

CenterNet3D-SL1 87.92 76.84 75.74 25
Pointpillars 86.13 77.03 72.43 62

SCNet 87.83 77.77 75.97 25
AFDet 85.68 75.57 69.31 N/A

HSAN (Proposed, small network) 88.5 78.31 76.46 40
HSAN (Proposed, large network) 88.98 78.77 77.27 25

TABLE II
COMPARISON OF AP(%) OF FIVE METHODS ON CYCLISTS.

Network Easy Moderate Hard
VoxelNet 67.17 47.65 45.11
TANet 85.98 64.95 60.40
Voxel-FPN 68.77 61.86 56.40
HSAN (Proposed, small network) 79.58 67.28 63.35
HSAN (Proposed, large network) 83.59 68.46 63.66

while HSAN’s training process is straightforward. SA-SSD
has a more complex network structure than HSAN since it
maintains an auxiliary network and involves a partial-sensitive
deformation operation. Overall, the proposed HSAN with a
large SECOND network achieves the best detection accuracy
for cars at easy and hard levels and the third best detection
accuracy for cars at the moderate level when compared with
ten state-of-the-art networks.

2) Comparison with Pointpillars and Voxel-FPN, two best
car detectors in terms of speed: Table I shows that Pointpil-
lars, Voxel-FPN, and HSAN with a small SECOND network
are three fastest detectors with an inference speed of 62, 50,
and 40 FPS, respectively. Pointpillars treats voxels in same
(x, y) coordinates as a whole to accelerate speed. Voxel-
FPN uses the multi-scale voxel features fusion module to
accelerate speed. However, both lead to information loss,
which degrades their detection accuracy. HSAN with a small
SECOND network improves the detection accuracy of Point-
pillars by 2.75%, 1.66%, and 5.56% and Voxel-FPN by 0.26%,
0.58% and 0.82% for cars at easy, moderate, and hard levels,
respectively. Overall, HSAN with a small SECOND network
is an excellent trade-off between performance and efficiency.

3) Ablation Studies: Comparison with their corresponding
baseline methods, SECOND with a small network and SEC-
OND with a large network: HSAN improves the detection
accuracy of its corresponding baseline SECOND. Specifically,
HSAN with a large SECOND network improves the large
SECOND by 1.77%, 2.99%, and 11.82% and HSAN with
a small SECOND network improves the small SECOND by
3.51%, 4.35%, and 11.17% to detect cars at easy, moderate,
and hard levels, respectively. The improvement is mainly
achieved by adding the HSA model to its baseline SECOND.
First, HSA considers input as low-level features and processes

them with convolutional layers to learn high-level features
for abstract semantics. Second, it combines input with high-
level convolved features to capture both abstract semantics
and detailed information to represent an object. HSAN and
SECOND have a similar network structure and the same
settings including a learning rate of 0.003, the Adam one
cycle optimizer, and the loss function of SmoothL1. However,
HSAN’s network parameters (e.g., 4.5 and 9.6 millions respec-
tively for the small and large SECOND network) are 18.4%
and 24.0% less than their baseline SECOND (e.g., 5.33 and
11.9 millions respectively for the small and large network)
due to the removal of 50% of the parameters of the last 3D
convolutional layer. As a result, HSAN is a little faster than
SECOND.

In summary, our extensive experimental results from three
perspectives demonstrate that HSAN has comparable car de-
tection results and the best cyclist detection results when
compared with state-of-the-art peer methods. In addition,
HSAN significantly improves the detection accuracy of its
corresponding baseline due to the addition of its HSA.

B. Experiment II

To verify the effectiveness of the proposed HSAN, we
summarize 3D and 2D car detection results of the proposed
HSAN, its two variants, and SECOND at three levels in terms
of AP in Table III. All four systems are implemented on a
small SECOND network. It shows that both HSAN and its two
variants achieve better car detection accuracy than SECOND
and HSAN outperforms its two variants at three levels.

TABLE III
COMPARISON OF DETECTION RESULTS OF FOUR METHODS.

Network 3D BEV (2D)
Easy Moderate Hard Easy Moderate Hard

SECOND 85.50 75.04 68.78 89.79 86.20 79.55
Variant 1 87.68 77.51 75.19 89.93 87.43 84.99
Variant 2 88.12 77.80 76.10 89.88 87.55 85.49
Proposed 88.50 78.31 76.46 90.23 87.80 85.83

Fig. 3 and Fig. 4 demonstrate three sample 3D car detection
results and two sample 3D cyclist detection results of the above
four systems, respectively, where ground truths are shown in
green bounding boxes and detection results are shown in red
bounding boxes. In Fig. 3, the first row presents a scenario that
SECOND detects three cars with one of them being a false
positive. Two variants and HSAN accurately detect two true
cars without any false positives. The second row presents a
scenario that HSAN successfully detects one true car without
false positives and SECOND and two variants detect one true
car and some false positives. Specifically, SECOND and two
variants detect three and two wrong cars, respectively. The
last row presents a scenario that SECOND detects one true
car and one false positive car and fails to detect one true car.
The variant 1 and HSAN obtain the same detection results
as SECOND except that they do not have false positives.
The variant 2 correctly detects both true cars without false
positives. In Fig. 4, the upper row shows that SECOND detects
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Fig. 3. Three sample car detection results of four methods (from left to right): SECOND, the variant 1, the variant 2, and the proposed HSAN.

Fig. 4. Two sample cyclist detection results of four methods (from left to right): SECOND, the variant 1, the variant 2, and the proposed HSAN.

two cyclists, while one of them is a false positive. HSAN and
its two variants detect one cyclist target object precisely. The
lower row shows that SECOND, the variant 1, and HSAN
successfully detect all five ground truth cyclists. But SECOND
detects one false positive cyclist. The variant 2 successfully
detects four truth cyclists and misses one truth cyclist.

These qualitative results show that HSAN and its variants
outperform their counterpart SECOND in detecting cars and
cyclists. Overall, HSAN detects the fewest false positives and
achieves the same true object detection as its variants.

IV. CONCLUSION

In this paper, we propose three soft attentions and employ
them in the 2D backbone network of SECOND to build a
HSAN and its two variants. The hierarchical structure of
HSAN combines features of multiple scales to obtain rich and

fine information to capture target object features. It also helps
the network focus on real object areas and filter out irrelevant
areas in point clouds at the low-level map (variant 1), the high-
level map (variant 2), and both low and high-level maps (the
proposed). Our extensive experiments on the KITTI validation
dataset confirm HSAN and its variants improve their counter-
part SECOND by at least 2.55%, 3.29%, and 9.32% for cars
at easy, moderate, and hard levels, respectively. HSAN with a
large SECOND network achieves the best detection accuracy
for cars at easy and hard levels and the third best accuracy for
cars at the moderate level and HSAN with a small SECOND
network is the third fastest car detector when compared with
ten peer networks. HSAN with a large SECOND achieves the
best performance on cyclists at moderate and hard levels and
the second best performance at the easy level when comparing
with three peer networks.
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