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ABSTRACT

Image registration is a viable task in the field of computer vi-
sion with many applications. Researchers propose various lo-
cal modules insensitive to illumination changes across cross-
spectral image pairs to handle the registration challenges un-
der different spectrum conditions. In this paper, we develop
an optimized feature-based approach to register natural cross-
spectral image pairs. It works on the phase information to
quickly identify and describe reliable keypoints that are insen-
sitive to illumination. It then employs a sequence of outlier re-
moval processes to accurately find the matching feature points
and the direct linear transformation to estimate the geometric
transformation to align the image pair. We benchmark the
proposed method and six state-of-the-art feature-based meth-
ods on the dataset provided by Ecole Polytechnique Fédérale
De Lausanne (EPFL), which includes 477 pairs of RGB-NIR
images. The comprehensive analysis demonstrates that the
proposed method achieves up to 13.90% accuracy improve-
ment over the second best registration method.

Index Terms— cross-spectral registration, phase congru-
ency, near infrared, feature-based image registration

1. INTRODUCTION

A cross-spectral image pair is referred to as a pair of two
corresponding images captured in different imaging config-
urations, such as different camera exposures, different cam-
era positions, and different sensors. This makes the images
in one pair not perfectly aligned, hence registering them is a
challenging task in computer vision applications. When reg-
istering two images, the aim is to find a geometric transfor-
mation between a pair of corresponding images to compen-
sate for the rotation, translation, and scaling differences. The
transformation is then used to spatially align, superimpose or
match the images in a pair. With two registered images, it
is easier to fuse information or describe differences between
them. Cross-spectral image registration has wide applications
in remote sensing, object detection, noise reduction, 3D im-
age reconstruction, image fusion, video surveillance, medical
image analysis, and image mosaicking.

In this paper, we focus on registering RGB spectrum and
near-infrared (NIR) spectrum image pairs. A pair might have
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differences in translation, scale, or rotation in the viewpoint.
Additionally, because different sensors capture different color
spectrums, each corresponding pixel between two images has
a different range of values, which is regarded as intensity vari-
ation in this application. The intensity variation presented in
this type of cross-spectral images imposes an additional chal-
lenge in the task of registration

Registration methods are categorized into two classes, i.e.,
similarity measure-based global methods and feature-based
local methods. Methods relying on similarity measures are
mainly built on global statistical dependencies between im-
ages. Mutual Information (MI), which was initially intro-
duced by Maes et al. [1], is a widely used similarity measure
capturing the global structure of an image. Therefore, MI
is not capable of describing local structures and differentiat-
ing local intensity variations. These deficiencies compelled
researchers to develop optimized MI-based registration meth-
ods to grasp local information [2-4]. Although these pro-
posed approaches inject some form of local representation
in a global-based method, they are computationally complex,
sensitive to noise, and optimized for medical images. There-
fore, they cannot handle natural images with richer details and
higher intensity variation.

Locally solving the problem of cross-spectral registra-
tion has been tackled mostly by finding matching features
extracted with a specific descriptor [5-8]. An end-to-end
feature-based method finds a correspondence between the
matching keypoints and estimates a transformation from one
spectrum to another. It usually consists of three major mod-
ules, namely, keypoint extraction, feature extraction, and out-
lier removal. The disadvantage of feature-based methods is
that finding repeatable and robust features between different
spectrums and different image content is often a challenging
task.

Other local-based methods [9, 10], which do not fall in
the category of feature-based approaches, have been also in-
troduced. But they are either sensitive to noise or can only
tolerate a very small amount of noise. Deep learning-based
approaches have also been explored. For example, Large De-
formation Diffeomorphic Metric Mapping (LDDMM) [11]
is utilized to develop a 3D Convolutional Neural Network
(CNN) architecture called Quicksilver to register two un-
aligned medical images. Quicksilver is optimized for medical
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images represented in 3D voxels. Additionally, deep learning
methods require a large pre-aligned dataset to train a network,
which is not always easy to craft.

This paper proposes a fast, reliable, and robust image reg-
istration method to align the RGB and NIR image pair un-
der different illumination conditions. The contributions of
the proposed method are as follows: 1) Employing the Phase
Congruency (PC) method to extract the keypoints that are in-
variant to intensity changes 2) Incorporating the intermediate
results from keypoint extraction, namely, the Log-Gabor fil-
ter responses, in the feature description step to represent each
keypoint using the histogram of oriented Log-Gabor filters;
3) Designing a sequence of outlier removal processes to accu-
rately match corresponding keypoints between the RGB and
NIR image pair, which perform well regardless of whether
non-rigid or rigid correspondences are present in the data;
and 4) Utilizing the Direct Linear Transformation (DLT), a
projective transformation, to estimate the geometric transfor-
mation for registering all the RGB points in the NIR domain.
Finally, we conduct an extensive study of the image registra-
tion results on a widely used public dataset for registration ap-
plications. The dataset is provided by Computer Vision Lab
at Ecole Polytechnique Fédérale De Lausanne (EPFL). The
proposed image registration method is evaluated on the regis-
tration results on EPFL dataset in terms of the Root Mean
Square Error (RMSE). It outperforms other state-of-the-art
methods in terms of accuracy and has comparable run-time
performance compared to the second most accurate method.
To the best of our knowledge, there is not a fully comprehen-
sive study of the registration task in the literature, whereas
the major focus is on the evaluation of the keypoint extraction
and keypoint description. This is the first attempt to evaluate
an end-to-end registration system from the perspective of the
performance of key modules in the system and their impact
on the whole system.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the proposed method. In Section 3, the evalua-
tion method and the experimental results on the EPFL dataset
are presented. A thorough study is pursued to develop a com-
prehensive guideline for future research. Finally, conclusions
are discussed in Section 4.

2. PROPOSED METHOD

In our application, we intend to register the RGB image onto
the NIR image. Hence, the NIR and RGB images will be
referred to as the reference image and the moving image, re-
spectively. All the pixels in the moving image (e.g., RGB
image) are transformed to the reference image plane via the
geometric transformation found in the process.

Our method consists of five components including key-
point extraction, keypoint feature description, keypoint fea-
ture matching, transformation estimation, and image registra-
tion. The aims of these five components are as follows:

e Keypoint extraction: Extracting distinct reliable and re-
peatable points in both reference and moving images uing
PC.

e Keypoint feature description: Representing the keypoints
using Log-Gabor filter responses stored in the PC results.
This compact but rich feature vector captures local infor-
mation and is insensitive to intensity variation.

e Keypoint feature matching: Finding the corresponding
matching keypoints between the RGB and NIR images
using an exhaustive matching method. The outliers are
removed using the Vector Field Consensus (VFC) algo-
rithm.

e Transformation estimation: Finding a geometric relation-
ship between the matching keypoints in the form of a
transformation matrix using the Direct Linear Transfor-
mation (DLT) algorithm.

e Image registration: Aligning or superimposing the regis-
tered RGB image onto the NIR image using the found ge-
ometric transformation.

In the following subsections, we will explain each component
in detail.

2.1. Keypoint Extraction

A keypoint is a well-defined spatial location representing
what stands out in an image based on local information
around the selected locations such as the corners. There-
fore, unlike global measures, keypoints have to be insensi-
tive to image rotation, translation, scale change, occlusions,
and background clutter. Classic keypoint extraction meth-
ods such as Harris [12] and FAST [13] extract local informa-
tion based on statistical measures of gradient. Gradient-based
keypoint detectors degrade the performance of cross-spectral
image registration when a large intensity variation exists be-
tween images. On the other hand, Kovesi suggests employing
the Phase Congruency (PC) operator [6] to extract features
using local energy and local phase. This operator uses the
principal moments of the PC information and a Local Energy
Model (LEM) [14] to extract features in an arbitrary image. In
the LEM model, features are described as points that are in the
most coherence state in the phase domain. Since the extracted
information is highly localized with filter responses invariant
to intensity changes, PC results in a keypoint extraction mod-
ule, which is robust to varying illuminations usually existing
in image pairs captured in cross-spectral applications. PC at
point z is computed as the ratio of weighted and noise com-
pensated local energy summed over all the orientations to the
total sum of filter response amplitudes over all orientations
and amplitudes. That is:

; W(z)[An(2)(cos(dn (@) = dn(w)) — | sin(dn(r) — m') -7

PCle) = Z A,(z)+ €

D
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where the term W (z) is the frequency spread weighting fac-
tor, A, () is the amplitude of the nth Fourier component at z,
and ¢, () is the phase of the nth component at z. The symbol
| | returns the enclosed value as it is if the value is positive;
otherwise, the symbol returns 0. € (e.g., 0.0001) prevents the
PC value from becoming unstable as the term > A, () be-

comes very small. This formulation of PC not OTIllly provides
better localization but also compensates the noise with an em-
pirically determined optimal value 7.

In practice, local frequency information is captured using
a bank of Log-Gabor filters at different scales and orienta-
tions. We take advantage of 4 scales and 8 orientations, which
capture enough scale and orientation information, to generate
a bank of 32 Log-Gabor filters. The input image is then con-
volved with these filters and their responses (local energies)
are saved to describe features in the next section. PC then
proceeds with moment analysis to extract second moments.
At this stage, we exploit the minimum moment as a corner
information map to extract the corners in both RGB and NIR
images. The 1200 corners with the most strength (i.e., the
largest 1200 values) in the map are chosen as the keypoints
among the candidate corners for each image in a pair and are
passed to the next module.

2.2. Keypoint Feature Description

We use a descriptor insensitive to illumination changes to rep-
resent features at corner points due to the non-linear intensity
variation between the cross-spectral RGB-NIR image pair.
We choose the Log-Gabor Histogram Descriptor (LGHD) [7],
which is a distribution-based descriptor relying on high fre-
quency components to make it a more robust candidate for
our desired application. LGHD uses the Log-Gabor filters in
different scales and orientations to build a histogram of ori-
ented filters in a patch of size S x S around each extracted
keypoint. Each patch is divided into 16 smaller sub-regions
and then the histogram is calculated.

Since LGHD itself uses PC, we combine the keypoint ex-
traction and feature description module into a single module
as our contribution. In other words, the local energies, i.e.,
the Log-Gabor filter bank responses saved in the keypoint ex-
traction module, are passed to the LGHD. Similar to the key-
point extraction step, we use 4 scales and 8 orientations to
construct a feature vector of size 4 x 8 x 16 (512). We em-
pirically use patches of size 50 (e.g., S = 50) around each
keypoint to compute the histogram. Larger patches would al-
low us to consider possibly more informative descriptors, but
at the same time they would be more susceptible to occlusions
and slower to compute. At the end of this step, the RGB im-
age has a set of feature vectors denoted as frgp to represent
the characteristics of each keypoint and the NIR image has
another set of feature vectors denoted as fyjr to represent
the characteristics of each keypoint.

2.3. Keypoint Feature Matching

As discussed in the previous section, each keypoint is rep-
resented by a feature vector of 512 values. An exhaustive
matching method is used to compute the pairwise distance
between the feature descriptors of the keypoints in each RGB
and NIR pair. Two keypoints match if their sum of absolute
differences in their feature descriptor in all 512 dimensions
is less than a certain threshold. This exhaustive matching
method ensures that all potentially matching keypoints are
uniquely identified and saved in a set of putative matching
points. This, however, leaves us with outliers, which need to
be removed to make our transformation estimation more ac-
curate. Maintaining a robust set of corresponding points from
a putative set of matching points is an essential step in the
registration task prior to transformation estimation. Classic
Sample Consensus (SAC) algorithms such as Random Sam-
ple Consensus (RANSAC) or M-estimator Sample Consen-
sus (MSAC) are highly sensitive to the proportion of outliers.
Moreover, they cannot handle non-rigid (non-parametric) cor-
respondences. For our task, we adopt the idea of Vector Field
Consensus (VFC) algorithm [15] to represent the matching
points by motion field samples and take advantage of the Ex-
pectation Maximization (EM) algorithm [16] to detect inliers
and remove outliers. If the observed 2D sets of matching
points are P, = (¥, ym)’ and P, = (z,,y,)T with P,
representing the set of keypoints in the moving image and P,
representing the set of keypoints in the reference image, the
motion field vector for each pair of matching points is:
’U:<Sn7tn); Sn:Prru tn:Pr_Pm (2)
where s, is the vector’s starting point and £,, is the vector’s
terminal point. Next, we define the motion field set as:

S ={(sn,tn) : n € N} 3)
The goal is to fit a mapping field function f so that

tn = f(sn) “4)

The robust estimation of f is obtained when there are no out-
liers present in the data. By assuming a Gaussian noise with
zero mean, an arbitrary uniform standard deviation for the in-
liers, and a uniform distribution for the outliers, VFC employs
the EM algorithm to estimate a set of parameters including f,
inlier, and outlier distribution parameters. The EM algorithm
estimates a posterior probability for each vector by updating
the distribution parameters until convergence (i.e., reaching
the desired minimum energy). The final solution enforces
closeness of f to the inliers and maintains smoothness on the
vector field of f. Vectors with the posterior probability lower
than a certain threshold (e.g., 0.75) are considered to be out-
liers.
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2.4. Transformation Estimation

Given a reference image 7 and a moving image m, the goal
of image registration is to find a transformation function,
H : RY — R9, which maps all the pixels in the moving
image to their corresponding pixels in the reference image.
Here, d denotes the dimension of the data, which in our case
is 2D (i.e., the = and y coordinates of matching keypoints).
At this step, we aim to find the optimal projective transfor-
mation matrix to map all the matching points in the moving
image to their corresponding matching points in the reference
image. Specifically, we utilize the DLT algorithm [17] to es-
timate the projective transformation H. We also constrain
DLT to require at least 8 matching points instead of 4 match-
ing points to increase its robustness to estimate /. Hence, the
task of registration will be tagged as failed if the keypoint fea-
ture matching method cannot identify at least 8 robust match-
ing points. The 2D inlier set of matching keypoints in the
moving RGB image is denoted as Py, = (2, Ym, 1)T, where
m =1,2,...,N,and N is the number of matching points with
N > 8. Similarly, the 2D inlier set of matching keypoints in
the reference NIR image is denoted as P, = (z,¥,,1)7,
where = 1,2,..., N. The transformation equation is de-
noted as P, = HP,,. DLT uses Singular Value Decompo-
sition (SVD) to calculate the 9-value vector consisting of the
entries of the matrix H:

hi ha hs
H=|hs hs hg 5)
he hs  ho

Using all pairs of the matching points between the RGB and
NIR images, DLT estimates all 9 elements of the H matrix,
which is further applied to all the pixels in the RGB image to
register the RGB image onto the NIR image.

3. EXPERIMENTAL RESULTS

In this section, we discuss our experiments and the results to
further evaluate the proposed image registration method and
the state-of-the-art image registration methods. These image
registration methods have been tested on the EPFL dataset
[18], which includes 477 pairs of RGB-NIR images. The
image pairs are categorized into 9 different types of scenes:
country, field, forest, indoor, mountain, old building, street,
urban, and water. Each category contains at least 50 image
pairs. Image pairs in the EPFL dataset are already aligned.
This will eliminate the need for manual labeling and facilitate
the evaluation. Sample pairs from this dataset are shown in
Fig. 1.

We have compared the proposed approach with different
combinations of keypoint extractors and keypoint descrip-
tors, which are promised to deliver good results under il-
lumination varied applications. Two powerful keypoint ex-
tractors, namely, SIFT [19] and PC, have been chosen for

our benchmark. We describe the features at each keypoint
using the four most commonly used cross-spectral descrip-
tors such as LGHD, SIFT, Eight Local Directional Patterns
(ELDP) [20], and Phase Congruency and Edge Histogram
Descriptor (PCEHD) [21]. We exclude keypoint extrac-
tors such as FAST because of its poor performance in lo-
cating enough robust and reliable keypoints on the EPFL
dataset. We extract the SIFT descriptors around each key-
point identified by SIFT since they can be easily extracted
from the SIFT keypoint extraction process. However, ex-
tracting the SIFT descriptors for other keypoint extractors
is difficult and we could not find any reliable online source
code to do this. We use the following naming conventions
{keypoint extractors + cross-spectral descriptors} to build the
benchmark for six state-of-the-art image registration methods
including {SIFT+LGHD}, {SIFT+SIFT}, {SIFT+ELDP},
{SIFT+PCEHD}, {PC+ELDP}, {PC+PCEHD}, the pro-
posed method (i.e., an efficient version of {PC+LGHDY}),
and its variant methods, which remove outliers using differ-
ent SAC algorithms. It should be noted that the six state-of-
the-art image registration methods use the same sequence of
outlier removal processes as proposed in the paper (i.e., the
exhaustive matching method followed by VFC) to find the re-
liable matching keypoints. The benchmark is executed on a
3.4GHz Core i7 machine with 16GBs of RAM.

Since the images are in different spectrums, we cannot
use the intensity of registered points to evaluate the registra-
tion performance. Instead, we use the RMSE to evaluate the
accuracy of the estimated transformation H. Since the image
pairs in the EPFL dataset is pre-aligned, we use H to regis-
ter the inlier keypoints extracted from the RGB image to be
aligned with their matching points in the NIR image. We then
compute RMSE based on the number of pixels that the regis-
tered points shift away from their original locations in the NIR
image. Specifically, if P; is the set of matching points in the
reference image and the set of their corresponding matching
points in the moving image after employing the transforma-
tion is denoted by P; = H P;, RMSE is calculated by:

N
1
RMSE =\/||P, = Pl = \| 5= >_IP. = HE|I> (6)
i=1

where N is the number of matching points and : is the index
of a pair of matching points in both the reference image and
the moving image. Smaller values of RMSE represent a more
accurate transformation from RGB to NIR. In literature, an
RMSE of below 5 pixels is usually considered to be a fair
error [5].

Table 1 summarizes the RMSE and runtime performance
of the six state-of-the-art registration methods, the proposed
method, and its three variant methods on the EPFL dataset
for each category, respectively. Overall, the proposed method
outperforms the other methods with an average of 2.29 pix-
els in RMSE for all the images. This renders as a 13.90%
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Fig. 1. Sample RGB-NIR image pairs from the EPFL dataset (top row: RGB images; bottom row: NIR images).

Table 1. Performance summary (i.e., the RMSE in terms of pixels and runtime in terms of seconds) of the proposed image
registration method, its three variant methods, and six compared feature-based image registration methods on the EPFL dataset,
where RMSE value is followed by the runtime value shown in parenthesis.

Category
METHOD COUNTRY FIELD FOREST INDOOR  MOUNTAIN OLD BUILDING STREET URBAN WATER Average
SIFT+LGHD  2.48(20.33) 4.75(19.99) 0.94 (23.44) 0.68 (13.12) 5.69 (19.34) 3.13 (16.95) 1.78 (17.76) 0.5 (15.68) 4.03 (18.06)  2.66 (18.3)
SIFT+SIFT 579 (4.32) 5.58(4.29) 1.00 (5.63)  0.94 (2.67) 7.72 (4.72) 3.54 (4.00) 1.99(3.82) 0.54(3.56) 8.26(3.65) 3.93 (4.07)
SIFT+ELDP 3.74(8.31) 5.50(8.12)  0.90 (9.84) 1.02 (5.27) 5.69 (8.11) 3.12(7.16) 1.62(7.26) 0.54(6.63) 11.96(7.03)  3.79 (7.53)
SIFT+PCEHD 3.84 (11.87) 5.66 (11.81) 0.88(13.60) 0.87(8.33) 3.92(11.95) 2.65 (10.34) 1.96 (10.48) 0.48(9.28) 8.46(10.21) 3.19(10.87)
PC+ELDP 3.64 (5.17) 4.84(5.26) failed (5.23) 0.68 (5.12) 3.63 (5.13) 1.18 (4.82) 2.28(5.20) 0.37(4.92) 15.06(5.09) failed (5.10)
PC+PCEHD 4.89(5.55) 11.40(5.68) failed (5.66)  0.61 (5.55) 2.48 (5.49) 1.25(5.23) 2.81(5.64) 0.36(5.35) 9.57(5.51) failed (5.52)
our method
+VFC 2.92(9.05) 5.12(8.87) 1.13(8.92)  0.64 (8.68) 2.61 (8.73) 1.16 (8.82) 1.44 (9.78) 037 (8.54) 5.37(8.69)  2.29(8.90)
+RANSAC 7.52(9.14) 13.53(9.20) 2.62(9.24) 1.91 (8.99) 6.42 (8.98) 3.45 (8.70) 351 (9.18) 1.26(8.79) 13.72(9.04) 5.99 (9.03)
+MSAC 6.40 (8.97)  20.81(9.01) 3.32(9.07) 1.20 (8.82) 5.67 (8.81) 3.97 (8.48) 3.64 (8.99) 0.92(8.58) 11.10(8.87) 6.34(8.84)
+MLESAC 7.83(8.95) 17.14(9.01) 4.65(9.07)  2.69 (8.80)  10.68 (8.90) 4.32 (8.78) 3.26(9.30) 1.99(8.89) 22.97(9.24) 8.39(8.99)
Average 389 (9.16) 6.08(9.12) 238(9.97) 0.77 (7.53) 4.53(9.01) 2.29 (8.32) 1.99(8.74) 0.45(8.02) 8.97(8.53)

accuracy improvement compared to the second best method
{SIFT+LGHD}. Additionally, the proposed method delivers
an RMSE of below 5 pixels across all categories except the
water category, while the second best method {SIFT+LGHD}
delivers an RMSE of below 5 pixels across all categories ex-
cept for the mountain category. Compared to {SIFT+LGHD},
the proposed method significantly improves the registration
performance for images in mountain and old building cate-
gories, slightly improves the registration performance for im-
ages in indoor, street, and urban categories, and achieves com-
parable registration performance for images in the other cat-
egories. It also achieves the best accuracy in terms of RMSE
in street and old building categories among all the compared
methods. This suggests that the proposed method performs
the best in scenes with a lot of variety and corners, which are
the features commonly seen in buildings and vehicles. The
images in the water category seem to be the most challeng-
ing to register. This is mainly due to homogeneous texture of
water, which makes it hard for the keypoint extractors to find
distinctive keypoints.

Table 1 shows that the proposed method is more than
two times faster than the second best registration method
{SIFT+LGHD}. Other methods such as {SIFT+SIFT},
{SIFT+ELDP}, {PC+ELDP}, and {PC+PCEHD} are faster

than our method. However, they do not deliver good accuracy
across the categories. For example, the fastest registration
method {SIFT+SIFT} achieves the second worst accuracy in
RMSE of 3.93 pixels. The second fast registration method
{PC+ELDP} fails to register all images. This makes the pro-
posed method the best candidate from the perspectives of both
accuracy and speed.

Table 1 also lists the RMSE performance of the proposed
method and its three variant methods, which use RANSAC,
MSAC, and Maximum Likelihood Estimation Sample Con-
sensus (MLESAC) to remove the outliers. It is clear that
VFC achieves better performance than the other three SAC
methods. With an average RMSE of 2.29 pixels, VFC im-
proves the second best method (i.e., +RANSAC) by 61.76%.
In all categories except for the challenging water category,
VEC achieves RMSEs of smaller than 5 pixels. The overall
average RMSEs of the three variant methods are all over 5
pixels.

VEFC has comparable runtime of 8.90 seconds in average
compared to the classic SAC methods. From the perspec-
tives of registration error and speed, the proposed method
with VFC as the outlier remover is the best candidate.
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4. CONCLUSIONS

In this paper, we propose an optimized feature-based ap-
proach to quickly, reliably, and robustly register cross-spectral
image pairs under different illumination conditions. Our ma-
jor contributions include:

e Employing the PC method, which performs well under
various illuminations, to identify reliable and robust key-
points that are invariant to intensity changes.

e Incorporating the Log-Gabor filter responses obtained
from the keypoint extraction step to represent the charac-
teristics around each keypoint using the histogram of the
filter responses.

e Designing a sequence of outlier removal processes (i.e.,
exhaustive matching method followed by VFC) to accu-
rately find the reliable matching keypoints.

e Employing DLT to estimate the geometric transformation
to align the image pair.

e Proposing the RMSE measure to evaluate the registration
performance.

We evaluate the proposed method, its three variant methods
incorporating different outlier removal algorithms, and six
common feature-based approaches in the cross-spectral regis-
tration field on a public dataset EPFL. The proposed method
achieves a 13.90% improvement in accuracy compared to the
second best method {SIFT+LGHD}. VFC is the best candi-
date for outlier removal. Overall, our method outperforms
other state-of-the-art feature-based methods that are devel-
oped for cross-spectral imagery from the perspectives of both
accuracy and speed.
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