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Abstract—In recent years, Massive Open Online Courses
(MOOCs) have gained significant traction as a rapidly growing
phenomenon in online learning. Unlike traditional classrooms,
MOOCs offer a unique opportunity to cater to a diverse
audience from different backgrounds and geographical locations.
Renowned universities and MOOC-specific providers, such as
Coursera, offer MOOC courses on various subjects. Automated
assessment tasks like grade and early dropout predictions are
necessary due to the high enrollment and limited direct interac-
tion between teachers and learners. However, current automated
assessment approaches overlook the structural links between
different entities involved in the downstream tasks, such as the
students and courses. Our hypothesis suggests that these struc-
tural relationships, manifested through an interaction graph,
contain valuable information that can enhance the performance
of the task at hand. To validate this, we construct a unique
knowledge graph for a large MOOC dataset, which will be
publicly available to the research community. Furthermore, we
utilize graph embedding techniques to extract latent structural
information encoded in the interactions between entities in the
dataset. These techniques do not require ground truth labels and
can be utilized for various tasks. Finally, by combining entity-
specific features, behavioral features, and extracted structural
features, we enhance the performance of predictive machine
learning models in student assignment grade prediction. Our ex-
periments demonstrate that structural features can significantly
improve the predictive performance of downstream assessment
tasks. The code and data are available in https://github.com/
DSAatUSU/MOOPer grade prediction

Index Terms—MOOC, Grade Prediction, Graph Representa-
tion Learning, Machine Learning

I. INTRODUCTION

Massive Open Online Courses (MOOCs) are open courses
with open enrollment that aim to make educational material ac-
cessible to a large audience online and often for free regardless
of location or background [1]. Over the last ten years, MOOCs
have emerged as a new online learning trend. In addition
to dedicated providers (e.g., Coursera and Udemy), many
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renowned universities have launched numerous courses that
have drawn an oversized enrollment. MOOCs play a crucial
role in modern education by democratizing access to quality
learning [2], promoting lifelong learning [3], and offering
flexibility [4], cost-effectiveness [5], and customization [6].
In addition, they facilitate global collaboration, rapid dissem-
ination of knowledge [7], and targeted skill development [8]
while providing a platform for educators to experiment with
innovative teaching methods. By expanding the reach of
educational institutions beyond traditional borders, MOOCs
foster a global community of learners and educators, ultimately
transforming the education landscape and making learning
more accessible, flexible, and personalized. Automated grade
prediction in MOOCs is a vital task with far-reaching benefits
for students, instructors, and course providers. Some of these
benefits include:

❒ Personalized learning: Automated grade prediction can
help identify a student’s strengths and weaknesses, en-
abling the creation of personalized learning paths to ad-
dress specific knowledge gaps [9, 10].

❒ Early intervention: By predicting a student’s perfor-
mance, instructors and course providers can intervene early
and offer additional support or resources to help struggling
students succeed [11, 12].

❒ Improved engagement: With insights into student perfor-
mance, course providers can make data-driven decisions to
improve course design, engagement, and retention [13].

❒ Enhanced feedback: Automated prediction systems can
provide immediate feedback to students, which can help
them understand their progress and make necessary ad-
justments in their learning strategies [13].

❒ Motivation: Providing students with their predicted grades
can encourage them to take control of their learning and
motivate them to improve their performance [14, 15].

❒ Performance tracking: Automated grade prediction en-
ables tracking of student performance over time [16],
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helping instructors identify trends and patterns that can
inform future course design and delivery.

❒ Dropout prevention: Identifying students at risk of drop-
ping out or under-performing early on, allows for targeted
interventions to help retain students and improve overall
course completion rates [17, 18].

❒ Informed decision-making: Grade prediction can help
course providers evaluate the effectiveness of their courses,
identify areas for improvement, and make evidence-based
decisions about future course offerings [19].

❒ Scalability: Automated grade prediction can be especially
beneficial in MOOCs, which often have large numbers of
students [20] because it can provide a more consistent and
scalable way to predict and monitor student performance
across diverse groups.

Fig. 1: Visualizing the traditional approach used in prior
prediction models compared to our graph representation.

Over the past decade, numerous automated grade prediction
methods have emerged in the MOOC landscape, offering var-
ious benefits, as mentioned above. However, existing methods
still face two critical shortcomings. Firstly, current methods
have a large granularity of grade prediction tasks, often
focusing on significant assignments or entire courses [21]. In
contrast, MOOC systems frequently include shorter exercises
that target specific skills, such as Python’s ‘for loop’ and
‘continue statement.’ Predicting future grades for these smaller
exercises would be highly beneficial. In this paper, we refer to
such exercises as ‘challenges’–See Section III. Secondly,
most existing methods overlook the complex yet rich structural
relationships between pertinent entities, such as students and
courses, which are essential to the prediction task. To illustrate,
consider the visualization in Figure 1, which demonstrates
our challenge grade prediction study. Figure 1(a) shows a
scenario where the data of each student-challenge pair is
treated separately, whereas Figure 1(b) presents our approach,
which conceptualizes the relationship between relevant entities
as an interaction graph. This graph encodes the inherent links
between students and challenges. We hypothesize that
the interaction graph between entities offers rich structural

information, which can be extracted and leveraged to enhance
the predictive performance of the grade prediction model.

In this study, we address the above-mentioned shortcomings
by focusing on the challenge prediction task, which offers
higher granularity than course outcome prediction. First, we
introduce a new dataset from a large MOOC provider in China,
containing various entities (e.g., challenge , course, chap-
ter) for thousands of students. We then construct an interaction
graph between students and challenges as a bipartite
graph, as seen in Figure 1(b), and extract salient and dense
entity-level vector representations using advanced graph rep-
resentation learning techniques. Specifically, we employ two
powerful node embedding learning methods, node2vec [22]
and DeepWalk [23]. One of the main benefits of these graph
representation learning methods is their unsupervised training,
using only the underlying graph structure without ground truth
labels, such as challenge grades. To validate the effective-
ness of knowledge graph representations, we develop machine
learning prediction models and conduct extensive experiments
with our dataset. Our results show that incorporating structural
graph information can enhance the predictive performance
of challenge grade prediction. Worth noting that existing
methods often rely on different and often complicated data and
features, such as student forums [15] or watched videos [11],
which may only sometimes be readily available.

➤ We introduce a new MOOC dataset that includes various
entities and their interactions for several thousand stu-
dents, which will be publicly available to the research
community.

➤ Contrary to current grade prediction methods in MOOCs,
we focus on short, small, and particular exercises, referred
to as challenges in our dataset.

➤ We build a bipartite graph between students and
challenges, then extract unsupervised dense entity
representations using advanced neural networks.

➤ We conduct extensive experiments, demonstrating the
usability of the interaction graph and its resulting rep-
resentations for challenge grade prediction.

Remark. In this paper, the term “performance” is used to
describe two different concepts. First, it refers to the academic
achievement of students, specifically their grades. Second, it
pertains to the performance of machine learning algorithms,
specifically their accuracy. The distinction between these two
uses of “performance” is made clear from the context in which
it is used.
The rest of this paper is organized as follows. First, in
Section II, we briefly review related work. Next, in Section III,
we introduce the dataset, followed by our grade prediction
problem statement in Section IV. Section V describes the
methodology, and Section VI includes experiments and dis-
cussions. Finally, we conclude the paper in Section VII and
enumerate several possible future directions.

II. RELATED WORK

Educational data mining is an emerging field that leverages
computational approaches to analyze large-scale educational



data [24, 25, 26, 27, 28, 29, 30]. In particular, computational
techniques for performance prediction in MOOCs were devel-
oped over the past ten years as MOOCs gained popularity.
In [16], the authors developed a personalized linear multiple
regression model to predict a student’s future performance for
specific assessment activities within a MOOC. They extracted
six types of features (session features, quiz-related features,
video-related features, homework-related features, time-related
features, and interval-based features) from MOOC server logs
to identify learning behavior and study habits for different stu-
dents. Ramesh et al. [31] developed two distinct probabilistic
soft logic models to forecast student achievement. One model
used behavioral, linguistic, and structural features, while the
other treated learner engagement as a latent variable and linked
observed features to one or more types of engagement. In [15],
the authors first classified learners according to motivation
into three groups: certification earning, video watching, and
course sampling. They then used an SVM-based model to
predict grades by classifying certification learners into two
classes (may or may not obtain a certification). Brinton and
Chiang [32] applied standard algorithms to predict whether a
MOOC student would be Correct on First Attempt (CFA) in
answering a question. They found that parsing click-stream
data into summary quantities was useful for classifying CFA.
They computed nine video-watching summary quantities, such
as fraction spent, fraction completed, fraction played, number
of pauses, fraction paused, average playback rate, standard
deviation of playback rate, number of rewinds, and number of
fast forwards. Robust CFA prediction provided insights into
student learning and helped instructors address students collec-
tively. A continuous assessment prediction problem could be
viewed as knowledge tracing, which predicted student’s future
performance based on their past activity. In [11], a time series
neural network was trained using lecture video watching click-
streams for predicting student grades in MOOCs. Piech et
al. [33] applied RNN and LSTM networks to predict students’
responses to exercises based on their past activity in MOOCs.
Furthermore, [9] used LSTM, RNN, LR, and SVM to make
individual grade predictions, with LSTM achieving the best
performance with an average AUC score of 0.748. Some
researchers proposed novel deep learning models to improve
MOOC learner performance prediction. In [9], the authors
developed a unified model that incorporated student demo-
graphics, forum activities, and learning behavior to predict
students’ assignment grades. They cast the prediction task as a
binary classification problem, predicting whether the student’s
grade was ranked in the top 30% of all students. Kim et al. [34]
used deep learning methods to predict real-time student per-
formance. They proposed a new deep learning-based method
(GritNet), built upon the bidirectional long short-term memory
(BLSTM) to predict student performance, such as graduation
prediction. The algorithm significantly improved prediction
quality within the first few weeks of the student experience.
In [25], the authors introduced Deep Online Performance
Evaluation (DOPE) to predict a student’s performance in
a specific course. Their method first represented the online

learning system as a knowledge graph and learned student
and course embeddings from historical data using a relational
graph neural network. Additionally, DOPE used an LSTM to
harness student behavior data into a condensed encoding since
the data naturally took on a sequential shape. In [35], the au-
thors introduced a model using Graph Neural Networks called
R2GCN (GNNs). They first created a network of questions
and interactions among students, and then they utilized the
proposed model to predict students’ performance. Specifically,
they formulated the student performance prediction in interac-
tive online question pools as a node classification problem
on a large heterogeneous network consisting of questions,
students, and the interactions between them, better capturing
the underlying relationship between questions and students.

All the previous studies on grade prediction in MOOCs
mainly focus on course-level outcomes or major assignments,
but little attention is paid to predicting grades for short, small,
and specific exercises, which are called challenges in this
study. Additionally, most existing methods ignore the complex
structural relationships between pertinent entities, such as
students and courses. To address these limitations, this study
proposes a new approach that constructs an interaction graph
between students and challenges and leverages advanced
graph representation learning techniques to extract salient and
dense entity-level vector representations. The effectiveness of
this approach is validated through machine learning prediction
models and extensive experiments on a new MOOC dataset
introduced in this study.

III. DATASET

MOOPer is an extensive online open practice dataset pro-
vided by a prominent Chinese university. The dataset contains
students’ online practice data from 2018 to 2019, along with
supplementary information on users and practice projects orga-
nized in the form of knowledge maps. The MOOPer dataset is
divided into two components: interactive data and knowledge
maps. The interactive dataset comprises 2.53 million practice
records, 21.6 million system feedback records, and 15,000
forum chat records. In the knowledge map section, there are
11 unique entity categories and ten specific relationship types.

A. Knowledge map

The knowledge map provides information about entities
and their relations. The structure of the knowledge map is
illustrated in the left section of Figure 2.

1) Entities: The dataset includes entities such as discipline,
sub-discipline, department, courses, chapter, challenge,
exercise, school, student, teacher, and topic. More details about
each entity will be provided in the dataset description upon its
release.

2) Relation: This section explains the relationships between
different entities. There is a hierarchical relationship among
the entities. For instance, each course contains numerous
exercises, and each exercise comprises multiple challenges.
However, a single exercise can be linked to multiple courses.



Fig. 2: Entities and their relations in the MOOPer dataset.

B. Interactive data

Student engagement with learning materials is categorized
into three groups: user behavior, user feedback, and system
feedback, described below.

1) User behavior: This category includes information on
the challenges students completed and the grades they
achieved for those tasks. It also contains data on the inter-
action’s open and close time, the number of attempts to solve
the challenge, whether students referred to the answers, and
other additional information.

2) User feedback: This category displays the user’s rating
of the interactive practice activities and their choice of learning
resources with different difficulty levels and problem types.
Moreover, students can share their discussions in the forum.
Chat content can be used to assess students’ learning states
and satisfaction, while the question-and-answer conversation
can reveal their ”blind spots” in knowledge acquisition. Addi-
tionally, the user’s behavior in the forum serves as a critical
indicator to speculate on their psychological condition and
learning style [36].

3) System feedback: This category provides students with
feedback on the system’s results, such as syntax errors in
their code, compilation results of the submitted code, and the
discrepancy between the actual output and the intended output.
Such data can be used to better understand users’ learning
abilities and knowledge mastery [37].

IV. PROBLEM STATEMENT

Suppose we have a subset of m challenges from our
dataset denoted as C = {c1, c2, · · · , cm}. Also, let there be n
students who have interacted with (or attempted) at least two of
the m challenges in C, denoted as S = {s1, s2, · · · , sn}.
For each challenge cj , we assume the features can be
represented as the vector fj ∈ Rdc , where dc is the di-
mension size after encoding the challenge features. All
challenge features are denoted as F ∈ Rdc×|C|. Similarly,
for each student si, we assume the collected information can
be represented as the vector di ∈ Rds , with ds being the
dimension size after encoding the student-related data. All
student features are denoted as D ∈ Rds×|S|. In addition to
the student-specific and challenge-specific data, the system
is assumed to have collected some student-challenge data
for each student si engaging with challenge cj , which we
represent as bij . Let gij denote the grade of student si in

challenge cj . Let B and G represent the entire student-
challenge data and grades, respectively. Moreover, suppose
graph BG = (S, C, E) denotes the bipartite graph of student-
challenge interactions, where E ⊂ S×C and e = (si, cj) ∈
E is the edge between student si and challenge cj . Finally,
let M(.) denote the graph representation machinery that takes
graph BG and provides dense representations for both student
and challenge pairs si and cj in E.

Given the notations listed above, our goal is to learn
a machine learning model f(.) that can predict students’
challenge outcomes G as follows:

f((C,S,F ,D,B,M(BG)),G) → Ĝ

where Ĝ should be as close as possible to G.

V. METHODOLOGY

Our methodology comprises several components. First, in
Section V-A, we describe extracted MOOC-related features.
Next, in Section V-B, we detail the structural features from
constructed interaction graph. Finally, in Section V-C, we
explain the developed machine learning models for grade
prediction.

A. MOOC-related Features

First, we extracted available MOOC-related features in Ta-
ble I. Some of these features are specific to a particular entity;
for example, the difficulty is specific to the challenge en-
tity. In addition, some features describe the interaction between
the entities; for example, the final score is the student’s score
for a specific challenge.

TABLE I: MOOC-related features

Feature Description

User ID Student unique identification number
Challenge ID Challenge unique identification number
Timestamp The time when the student first opened the challenge
Final Score Final score of student on challenge

Exercise ID Exercise ID for a particular challenge
Course ID Course ID of a specific exercise
Difficulty Difficulty level of a challenge
#Retries Number of attempts to complete a challenge
Duration Time spent to complete a challenge

B. Structural Features

As described in Section IV, we constructed a bipartite
graph by considering students and challenges as nodes
and interactions between these nodes as edges. Table II shows
some of the properties of this graph.

From graph BG, we first extracted two node-level pieces
of information, including the degree and eigenvector centrality
of the challenges and users. The degree of a node is
determined by the number of edges incident to it. Eigen-
vector centrality measures a node’s influence within a net-
work [38]. Next, we extracted node embeddings for the users
and challenges using two well-known graph representation



TABLE II: Properties of constructed interaction graph

Type Bipartite
Includes node features Yes
Includes edge features Yes
Number of students (|S|) 5537
Number of challenges (|C|) 1981
Number of nodes (students+challenges or |S|+ |C|) 7518
Number of interactions (edges or |E|) 115124
Density 0.01

learning methods, namely node2vec [22] and DeepWalk [23].
Node2vec is an algorithmic framework for learning continuous
feature representations for graph nodes. In node2vec, we
learn a mapping of nodes to a low-dimensional space of
features that maximizes the likelihood of preserving network
neighborhoods of nodes [22]. DeepWalk is a novel approach
for learning latent representations of vertices in a network.
Statistical models can utilize these latent representations to
encode social relations in a continuous vector space [23]. Dur-
ing the experiments, we replaced the user ID and challenge
ID in the dataset with these structural features when structural
data were to be used. Table III shows the extracted structural
features that we employed.

TABLE III: Structural features

Feature Description

Challenge embedding Challenge node embedding
User embedding User node embedding
Degree of challenge Number of edges linked to a challenge
Degree of user Number of edges connected to user
Challenge EC Eigenvector centrality of challenge
User EC Eigenvector centrality of user

C. Prediction Models

We utilized the following prediction models to predict a
student’s grade in a challenge:

❏ Random Forest
Random Forest is a classifier that employs multiple
decision trees on various subsets of the input dataset and
averages the results to enhance the predicted accuracy. It
is based on ensemble learning, which combines multiple
classifiers to tackle a challenging problem and improve
the model’s performance. Formally, given a dataset D =
{(xi, yi)}ni=1, Random Forest builds T decision trees
{ht(x)}Tt=1 using bootstrapped subsets of D. The final
prediction is obtained by averaging the individual tree
predictions:

H(x) =
1

T

T∑
t=1

ht(x) (1)

❏ Gradient Boosting
Gradient boosting is a machine learning technique for
regression and classification problems that produces a
prediction model as an ensemble of weak prediction
models. Gradient boosting is an iterative process that
effectively transforms a weak learner into a strong learner.

Formally, given a dataset D = {(xi, yi)}ni=1, gradient
boosting builds an ensemble of weak learners {ht(x)}Tt=1

by minimizing the loss function L(y, F (x)):

F (x) =

T∑
t=1

αtht(x) (2)

where αt is the step size at iteration t.
❏ XGBoost

XGBoost is an implementation of gradient-boosted deci-
sion trees. In this approach, decision trees are generated
sequentially. Weights play a crucial role in XGBoost.
Each independent variable is weighted before being input
into the decision tree that predicts outcomes. Formally,
given a dataset D = {(xi, yi)}ni=1, XGBoost builds an
ensemble of T decision trees {ht(x)}Tt=1 by minimizing
the regularized loss function L(y, F (x)) + Ω(ht):

F (x) =

T∑
t=1

ht(x) (3)

where Ω(ht) is the regularization term that controls the
complexity of the decision trees.

Remarks. We performed experiments using alternative pre-
diction models, such as Support Vector Machine (SVM) and
Decision Tree Classifier (DT), but observed unsatisfactory
performance with our data. As a result, we chose to utilize the
three prediction models discussed in our analysis. Moreover,
our objective is not to develop a novel machine learning
methodology. Instead, we aim to examine the influence of
structural features in a MOOC-induced graph. Thus, we
employed off-the-shelf models. We plan to explore more
advanced models in future work.

VI. EXPERIMENTS

To evaluate the effectiveness of structural features in
challenge grade prediction, we performed various exper-
iments, which are discussed in this section. First, in Sec-
tion VI-A, we describe the experimental settings. Next, in Sec-
tion VI-B, we present the main empirical results. Section VI-C
includes experimental results showing the association between
model predictions across students’ academic performance lev-
els. Finally, in Section VI-D, we analyze the importance of
different features in grade prediction performance.

A. Experimental Settings

We divided the final scores into five classes to perform grade
classification. The grade range for each class and the number
of instances with that grade class is displayed in Table IV.

To split the dataset into train and test sets, for every student,
we first sorted the challenges they have completed based
on their timestamp. Then, we added approximately the first
80% of challenges for each student in the training set
and the rest in the test set. The reason for performing this
type of split is to predict a student’s future grades based on
their previous performance. This way, the prediction reflects
the practical usage of grade prediction tasks where we are



TABLE IV: Discretized grades and number of instances in
each grade label

Class Grade range # Instances
class 0 (Extremely Low) 0 ≤ grade < 20 34500
class 1 (Very Low) 20 ≤ grade < 40 34403
class 2 (Average) 40 ≤ grade < 60 19315
class 3 (Low) 60 ≤ grade < 80 3970
class 4 (High) 80 ≤ grade ≤ 100 34500

interested in estimating the future grades during an academic
period, for example, to intervene and offer help to possible
struggling students.

The Random Forest and Gradient boosting methods were
implemented using the scikit-learn package. To implement the
XGBoost model, we used the XGBoost Python package. In ad-
dition, we utilized the node2vec package1 and the Karateclub
package2 for node2vec and Deepwalk implementation, respec-
tively. The hyperparameters used in learning node embeddings
with node2vec and DeepWalk are as follows: embedding
dimension: 128, number of walks: 100, walk length: 10, and
window size: 10.

Evaluation Metrics. The performance prediction models
were evaluated using a variety of measures. Suppose TP, FP,
TN, and FN are the number of true positive, false positive,
true negative, and false negative samples, respectively. Given
this notation, we reported the prediction performance using
the following metrics.

Accuracy calculates the proportion of accurate predictions
to the total number of instances considered:

Accuracy =
TP + TN

TP + FP + TN + FN

Precision is the ratio of accurately predicted positive pat-
terns in a positive class to all predicted positive patterns:

Precision =
TP

TP + FP

Recall measures the fraction of positive patterns that are
correctly classified:

Recall =
TP

TP + FN

F1-score represents the harmonic mean of the Precision and
Recall:

F1-score = 2× Precision×Recall

Precision+Recall

ROC (Receiver Operating Characteristic) curve is a graph
that displays how well a classification model performs across
all classification thresholds. It is a probability curve that plots
the TPR (True Positive Rate) and FPR (False Positive Rate)
at different threshold values.

AUC calculates the total two-dimensional region under the
complete ROC curve.

1https://pypi.org/project/node2vec/
2https://karateclub.readthedocs.io/en/latest/

B. Experimental Results

TABLE V: Comparing the performance of 9 models on grade
prediction task. The best algorithm in each column is displayed
in bold.

Model Accuracy Precision Recall F1-score
Random Forest 0.80 0.85 0.86 0.86

XGBoost 0.78 0.84 0.85 0.85
Gradient Boosting 0.84 0.89 0.89 0.89

Random Forest + DeepWalk 0.89 0.92 0.92 0.92
XGBoost + DeepWalk 0.87 0.91 0.90 0.90

Gradient Boosting + DeepWalk 0.89 0.92 0.92 0.92
Random Forest + node2vec 0.88 0.92 0.91 0.91

XGBoost + node2vec 0.89 0.92 0.92 0.92
Gradient Boosting + node2vec 0.89 0.92 0.92 0.92

Table V presents the results of nine experiments, as we
have three predictive models and three variations of struc-
tural features: no structural features, node2vec (+ degree and
eigenvector), and DeepWalk (+ degree and eigenvector). From
the results presented in Table V, we can make the following
observations:

➩ Incorporating structural features using either DeepWalk
or node2vec significantly improves the performance of
all three prediction models (Random Forest, XGBoost,
and Gradient Boosting) in terms of Accuracy, Precision,
Recall, and F1-score.

➩ Gradient Boosting consistently outperforms Random For-
est and XGBoost across all variations, achieving the
best overall performance when combined with node2vec
structural features.

➩ There is a close performance between the models incor-
porating DeepWalk and node2vec features, with only a
slight edge in favor of the node2vec-based models.

➩ Given the large number of students enrolled in MOOCs,
even a 3% increase in performance is quite significant.

➩ The use of structural features leads to a substantial
improvement in the model performance. For instance, the
Gradient Boosting model’s performance increases from
an F1-score of 0.89 to 0.92 when incorporating node2vec
features.

These observations highlight the importance of considering
complex structural relationships between entities in MOOC
grade prediction models and the potential of graph-based
representation learning techniques to enhance the performance
of these models.

Figure 3 presents the ROC curves and their corresponding
AUCs. Since we are addressing a multi-class classification
problem, ROC curves can be plotted by comparing one class
against the rest. As a result, for each class, we plotted one-
versus-rest ROC curves for all nine models and calculated the
AUC scores. It can be observed that the predictions for the
middle classes are nearly perfect for all models. However, for
classes 0 and 4, the models’ performance is not as strong.
Nevertheless, the ROC curves demonstrate that the models
incorporating structural features outperform others in these
classes.

https://pypi.org/project/node2vec/
https://karateclub.readthedocs.io/en/latest/
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Fig. 3: One-vs-Rest ROC curves and AUC score for all models.

TABLE VI: Detailed classification results for different Gradient Boosting variations

Gradient Boosting Gradient Boosting + node2vec Gradient Boosting + DeepWalk
Class Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
class 0 (Extremely Low) 0.68 0.72 0.70 0.82 0.72 0.77 0.83 0.72 0.77
class 1 (very low) 0.99 0.99 0.99 0.99 1.00 1.00 0.99 1.00 1.00
class 2 (low) 0.99 1.00 0.99 0.99 1.00 0.99 0.99 1.00 1.00
class 3 (average) 0.99 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00
class 4 (high) 0.79 0.74 0.76 0.82 0.88 0.85 0.82 0.89 0.85
accuracy 0.84 0.89 0.89
macro avg 0.89 0.89 0.89 0.92 0.92 0.92 0.92 0.92 0.92
weighted avg 0.84 0.84 0.84 0.89 0.89 0.89 0.89 0.89 0.89

Additionally, we have provided the classification reports
(Table VI) and the confusion matrices (Figure 4) for Gra-
dient Boosting (the top-performing model) with and without
using structural features to examine their effectiveness on
the challenge grade prediction task in greater detail. The
primary classification metrics are displayed as a function of
each class in the classification report. This offers a more
comprehensive understanding of the classifier’s behavior than
global accuracy, which can conceal functional deficiencies in
one class of a multi-class problem. We make the following
observations from Table VI and Figure 4:

➩ We can observe that structural features significantly im-
prove the performance of classes 0 and 4, which the basic

Gradient Boosting model struggles to predict effectively.
➩ While there has not been a substantial improvement in

performance for classes 1, 2, and 3, it’s important to
note that incorporating structural features makes a notable
difference in predicting classes 0 and 4.

➩ The basic Gradient Boosting model faces difficulties in
accurately predicting these classes, but the inclusion of
structural features has resulted in a 7% improvement in
performance for class 0 and a 9% increase for class 4.

➩ It is crucial to emphasize the improvement in class 0,
as this class represents students with the lowest grades,
whose accurate prediction in automated grade prediction
in MOOCs is essential [11, 12]. These students are
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Fig. 4: Confusion matrix of (a) Gradient boosting model. (b) Gradient boosting + node2vec model. (c) Gradient boosting +
DeepwWalk model.
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Fig. 5: Performance of Gradient Boosting and Gradient Boost-
ing + node2vec models for different categories of students.

considered at-risk, and identifying them accurately can
enable targeted interventions and support to help them
succeed in their courses. The incorporation of structural
features in the prediction models proves to be a valuable
approach to enhance the prediction performance for this
critical group of students. The following section offers
an in-depth explanation of our automated challenge
grade prediction system across student groups with dif-
ferent academic attainment levels.

C. Grade prediction and student academic performance

As discussed in Section I, the primary goal of grade
prediction is typically to identify and support students with
low academic performance. It is essential for a grade predic-
tion model to accurately predict future grades for struggling
students. To evaluate the performance of our best model (Gra-
dient Boosting) for low-performing students, we categorized
students into five groups based on their grades in the training
set, which can be considered as their previous performance.
Students with more than 90% of their grades in classes 0 and

1 (low grades) were labeled as “Extremely Low” performing.
Similarly, students with 80-90% low grades were labeled
“Very Low”, 50-80% low grades as “Low”, 20-50% low grades
as “Average”, and students with less than 20% low grades were
labeled “High” performing.

Figure 5 illustrates the performance of Gradient Boosting
with and without using structural features for the five different
categories of students. In terms of Weighted F1-score, the
prediction for “Extremely Low” performing and “Very Low”
performing students improved by 6% and 4%, respectively,
when structural features were included. This, again, demon-
strates the positive impact of incorporating structural features
for predicting the performance of struggling students.

D. Feature Analysis
Figure 6 shows the feature importance in different Gradient

Boosting models. In the first model, challenge ID, dura-
tion, and timestamp are the top three factors in predicting the
challenge grade. However, in the second model, the em-
bedding of challenge nodes along with user node embed-
dings and degree of challenge node dominates the feature
importance plot. In other words, structural features become
prominent features that surpass ordinary MOOC-related fea-
tures, e.g., challenge ID. Finally, in the third model, where
DeepWalk was used to obtain the embeddings, importance
is more distributed but still the challenge embeddings,
and user embeddings along with node degree and eigenvector
centrality are critical factors in the model’s predictions. This,
again, emphasizes the importance of considering structural
features in grade prediction.

VII. CONCLUSION

MOOC is one of the most exciting recent phenomena in
higher education. The promise of MOOC is the democrati-
zation of education [2]. It has attracted millions of learners
worldwide. The high enrollment, diversity of topics, and the
scarcity or lack of instructors and student-instructor interaction
have automated some tasks. In particular, grade prediction
is a crucial task providing several advantages. However, in
this study, we identified two issues associated with grade
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Fig. 6: Feature importance of models (a) Gradient boosting model. (b) Gradient boosting + node2vec model. (c) Gradient
boosting + DeepWalk model.

prediction in MOOC: 1) the lack of enough granularity in the
prediction (i.e., focusing on high-level tasks such as course
prediction), and 2) ignoring complex yet effective structural
relationships among pertinent entities. In this study, we first
introduced a novel and large MOOC dataset providing multiple
aspects of academic data to overcome these issues. Notably,
challenges are short and small exercises focusing on a spe-
cific skill. Since this is a complicated problem and offers high
granularity in the prediction, we pressed onward to predict
students’ challenge grades. We extracted salient and dense
structural representations from a constructed interaction graph
between students and challenges to address the second
issue and improve prediction performance. We performed
extensive experiments and showed that structural features
could significantly improve the quality of the challenge
prediction.

There are several intriguing future directions. First, an in-
teresting research question is how our challenge prediction
system is perceived in real-world settings. In fact, our research
group is currently investigating this aspect. Second, one could
extend the interaction graph beyond a bipartite graph and
include other entities, such as courses and disciplines. Third,
such a heterogeneous graph could be used to perform other
tasks, like course recommendation. Finally, exploring more ad-
vanced machine learning methods, such as node representation
learning in heterogeneous graphs [39], applied to the graph in
our dataset, is a promising direction for future research.
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