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ABSTRACT Breast ultrasound (BUS) imaging is commonly used in the early detection of breast cancer
as a portable, valuable, and widely available diagnosis tool. Automated BUS image classification and
segmentation can assist radiologists in making accurate and fast decisions. Recent studies illustrate that
tumor, peritumoral, and background regions of BUS images provide valuable information for BUS image
segmentation or classification. However, few studies have investigated the influence of these three regions
on multi-task learning. In this study, we propose an RMTL-Net to simultaneously segment tumor regions
and classify tumors in BUS images into benign or malignant categories. To improve both segmentation
and classification performance, we design a regional attention (RA) module that employs the predicted
probability maps to automatically guide the classifier to learn important category-sensitive information in
the tumor, peritumoral, and background regions and seamlessly fuse them to obtain a better feature represen-
tation. We conduct detailed ablation experiments of the proposed RA module and comparative experiments
with four recent state-of-the-art peer multi-task learning methods, three single-task segmentation methods,
and four single-task classification methods on two public BUS datasets. Experimental results show that the
proposed RMTL-Net achieves the best overall segmentation and classification accuracy in terms of five
segmentation metrics and six classification metrics.

INDEX TERMS Regional attention, multi-task learning, segmentation, classification, breast ultrasound.

I. INTRODUCTION
Breast cancer is a significant threat to women’s health and is
the most commonly diagnosed cancer and the leading cause
of cancer mortality among women worldwide in 2020 [1].
Mortality rates are much higher in low- and middle-income
countries than in high-income countries due to the delayed
detection and treatment [2], [3]. Mammography and breast
ultrasound (BUS) are two popular screening modalities for
early breast cancer detection, which leads to appropriate treat-
ment and increased survival rates. BUS has been commonly
used in the early diagnosis of breast cancer in women of
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all ages, especially in low- and middle-income countries,
because it is portable, widely available, low-cost, and highly
sensitive [4], [5]. Computer-aided-diagnosis (CAD) systems
are proposed to help radiologists interpret BUS images, make
a more accurate diagnosis, and reduce their workload [6],
[7]. In general, a CAD system for breast cancer detection
includes automated segmentation and classification as two
primary steps for further processing. Automated analysis of
BUS images can help radiologists make efficient diagnoses
of breast cancer. However, it is still challenging due to the
lack of public training data and the high variability of tumors
in shape, size, and location [8], [9].

BUS image segmentation methods can be classified
into semi-automated [10], [11], [12] and fully automated
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FIGURE 1. An overview of the proposed RMTL-Net.

methods [13], [14] based on human intervention. Fully
automated BUS image segmentation is the trend in future
BUS CAD systems since it is reproducible and suitable for
large-scale tasks [15]. Fully automated deep learning-based
methods, especially U-Net [16] based methods [9], [17],
[18], have recently gained increased popularity. For example,
Wang et al. [9] propose a fusion deep learning network to
address issues of unclear boundaries and large variations in
tumors in BUS images. It uses an encoder to capture the con-
text information, a decoder to localize prediction, and a fusion
to combine information from the encoder and the decoder.
Amiri et al. [17] propose a two-stage U-Net architecture: one
for tumor detection and one for tumor segmentation. They
also prove that detection and its evaluation in the first stage
improve segmentation results in the second stage.

Convolutional neural networks (CNNs) have recently
achieved superior performance compared to traditional
machine learning classification methods such as support vec-
tor machine [19], K-nearest neighbors [20], random for-
est [21], and Gaussian mixture models [22]. Among them,
VGG [23], ResNet [24], and their variants are widely used
for BUS image classification. Liao et al. [25] adopt a super-
vised block-based segmentation algorithm to separate tumor
regions from BUS images and then use VGG-19 to clas-
sify segmented tumor regions as benign or malignant. Cui
et al. [26] propose to use ResNet-34 as the backbone feature
extractor and design a fused network to combine features of
tumor, peritumoral, and combined-tumoral (combination of
tumor and peritumoral) regions to achieve better classifica-
tion results.

Multi-task learning (MTL) for simultaneous BUS segmen-
tation and classification has recently been extensively studied
in the computer vision community. Benign and malignant
breast tumors have different characteristics [27], [28]. For
example, benign tumors tend to be smooth, round, and well
circumscribed whereas malignant tumors are typically rough
and spiculated. In addition, malignant tumors tend to have
spiculated margins and posterior acoustic shadows. Based on
these observations, many MTL [29], [30], [31], [32] studies
are proposed to join BUS image segmentation and classifica-
tion tasks in one network to encourage feature sharing during
training to improve both tasks. These MTL methods are

mostly based on a U-Net structure (i.e., an encoder-decoder
network for segmentation) and some of them [30], [32]
include attention mechanisms to achieve better classification
performance. For example, Zhou et al. [29] propose an MTL
framework with a light-weight multi-scale network to itera-
tively refine features to highlight tumor regions for better 3D
BUS image classification. Chowdary et al. [31] propose an
MTL framework with a dense branch to combine multi-scale
features from different layers of the network for efficient clas-
sification of BUS images. Zhang et al. [30] propose an MTL
framework with soft and hard attention mechanisms to guide
the model to pay more attention to tumor regions to boost
classification accuracy. Xu et al. [32] propose anMTL frame-
work with a context-oriented self-attention (COSA) module
to incorporate prior medical knowledge to guide the model
to learn contextual relationships for better segmentation and
classification performance.

Recently, several studies have demonstrated that tumor,
peritumoral (the tumor-adjacent area surrounding the tumor),
and background regions in BUS images help to improve the
diagnosis accuracy of breast cancer in CAD methods [26],
[33], [34], [35]. Lee et al. [34] use the mask R-CNN to
extract tumor regions from BUS images and obtain peri-
tumoral regions via a dilation operation. They then use a
deep learning model to train tumor, peritumoral, and their
combined-tumoral regions to predict axillary lymph node
(ALN) metastasis status, which is important in guiding treat-
ment in breast cancer. Sun et al. [33] build two models
based on tumor, peritumoral, and combined-tumoral regions
and compare their performance to show that peritumoral and
combined-tumoral regions achieve significantly better perfor-
mance in predicting ALN metastasis in BUS images for both
models.

Tumor, peritumoral, and background regions of a BUS
image have been further studied to provide important
category-sensitive information to improve the aforemen-
tioned methods to achieve better segmentation or classifi-
cation results. Specifically, the peritumoral region in BUS
images was discussed in the BUS image classification
task [26] and the ALN metastasis prediction task [33], [34]
to further improve their accuracy. Cui et al. [26] use an
encoder-decoder structure to obtain three tumoral regions
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FIGURE 2. Illustration of two examples of BUS images, their ground truth and pseudo ground truth regions, and three probability maps generated by the
proposed RMTL-Net. First column: Original BUS images with a benign tumor shown at the top row and a malignant tumor shown at the bottom row.
Second column: Pseudo ground truth regions produced by the proposed pre-processing method, where the peritumoral region is shown in green and the
background region is shown in black. The ground truth tumor region is shown in red. Third column: Three regions containing category-sensitive
information overlaid on the original image, where the tumor region is within the red line, the peritumoral region is between green and red lines, and the
background region is outside the green line. Fourth column: Probability map of the tumor region. Fifth column: Probability map of the peritumoral region.
Sixth column: Probability map of the background region.

at different resolutions to extract tumor features (e.g., com-
ponent, internal echo, and aspect ratio), peritumoral fea-
tures (e.g., tumor boundary patterns), and background fea-
tures (e.g., contextual relationship between the tumor and
surrounding tissues). These features lead to higher compu-
tational costs but better classification results. Despite the
success of the utilization of three tumoral regions, they have
hardly been employed in simultaneous BUS image segmen-
tation and classification. To the best of our knowledge, the
research work of Xu et al. [32] is the pioneer in this direc-
tion. They employ three tumoral regions in a BUS image
to improve the MTL performance. However, their extracted
peritumoral region is small, which may not provide sufficient
information for simultaneous BUS image segmentation and
classification.

In this paper, we propose a regional attention (RA) module
to learn corresponding category-sensitive features from three
regions (e.g., tumor, peritumoral, and background regions)
in BUS images and investigate their influence on MTL.
We also apply the proposed RA module to a two-stage MTL
framework to demonstrate its efficacy in BUS image seg-
mentation and classification. The proposed regional-attentive
multi-task learning framework (RMTL-Net) consists of an
encoder-decoder network for segmentation and a light-weight
network for classification. Both segmentation and classifica-
tion share features extracted from the encoder. In addition,
the RA module utilizes the predicted probability maps to
guide the classification network to learn weighted region
attentive features for more accurate classification. The over-
all framework of the proposed RMTL-Net is illustrated in
Fig. 1. We conduct extensive experiments on two public
BUS datasets that include 810 BUS images in total to
evaluate the performance of RMTL-Net and its variants
and compare RMTL-Net with several state-of-the-art single-
task and multi-task methods. Experimental results show that
RMTL-Net boosts the performance of both segmentation and
classification tasks. Our main contributions are summarized
as follows:

• We design a novel MTL framework, named RMTL-Net,
for simultaneous tumor segmentation and classification
in BUS images. The proposed RMTL-Net outperforms
recent state-of-the-art segmentation and classification
methods on two public BUS datasets.

• We propose a RA module to improve both segmentation
and classification performance. It employs the predicted
probability maps to automatically guide the classifier
to learn important category-sensitive information in the
tumor, peritumoral, and background regions.

• We conduct extensive experiments on two public BUS
datasets. Experimental results prove its MTL efficacy
in BUS image segmentation and classification and
the importance of tumor, peritumoral, and background
regions of BUS images.

II. MATERIALS AND METHODS
In this section, we first present the materials in terms of two
datasets and the proposed pre-processing method to prepare
the training images and their pseudo ground truth images.
We then describe the proposed method in terms of its network
architecture and the regional attention (RA) module.

A. MATERIALS
1) DATASETS
Two public BUS datasets used in this study are UDIAT [36]
and BUSI [37]. Dataset UDIAT was collected by the UDIAT
Diagnostic Centre of the Parc Taulı Corporation, Sabadell
(Spain) using a Siemens ACUSON Sequoia C512 system
17L5 HD linear array transducer (8.5 MHz). It contains 163
BUS images with an average size of 760 × 570 pixels,
where 110 images have benign tumors and 53 images have
malignant tumors. These BUS images are obtained from
different female patients and each BUS image presents one
tumor. Ground truth is labeled by experienced radiologists.
Dataset BUSI was collected by Baheya Centre for Early
Detection and Treatment of Women’s Cancer, Egypt using
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FIGURE 3. A detailed illustration of the proposed RMTL-Net.

LOGIQ E9 ultrasound and LOGIQ E9 Agile ultrasound
system. It contains 780 BUS images with an average size of
500 × 500 pixels, where 437 images have benign tumors,
210 images have malignant tumors, and 133 images do not
have any tumors. These BUS images are obtained from
600 female patients between the ages of 25 and 75 years old.
We use 647 images with benign or malignant tumors in this
dataset for binary classification in this study. Ground truth is
labeled by radiologists from Baheya.

2) PRE-PROCESSING
In the proposed method, all images are resized to 256 ×

256 by bilinear interpolation before being fed into RMTL-
Net. Data augmentation techniques are carried out to augment
images during the training process using four transforma-
tions: (i) rotation of an angle between -5 and 5 degrees at
the image center, (ii) random flipping horizontally, vertically,
or both, (iii) Gaussian blur, and (iv) Median blur. We perform
these four transformations in the above order on each input
BUS image to augment the training images during the training
procedure.

Given a ground truth BUS image that contains the tumor
contour, we generate two pseudo ground truth regions: peri-
tumoral and background regions. First, we employ a Laplace
edge detector on the ground truth image to find the contour
of the tumor region. Second, we dilate the tumor region by
32 pixels and subtract the tumor region from the dilated result
to obtain the peritumoral region. We choose 32 pixels in

dilation to ensure the peritumoral region remains at the lowest
resolution when a series of down-sampling operations take
place in RMTL-Net. Third, we treat the remaining region
as the background region. The first three columns in Fig. 2
present BUS example images, their ground truth tumor region
labeled by radiologists and their pseudo ground truth peri-
tumoral and background regions produced by the proposed
pre-processing method, and three regions as shown on the
original images. An image containing the ground truth tumor
region, the pseudo ground truth peritumoral region, and the
pseudo ground truth background region is further used during
the training process to learn the boundaries delineating tumor,
peritumoral, and background.

B. METHODS
The proposed RMTL-Net improves its peerMTL-COSA [32]
from the following five aspects:

• Unlike MTL-COSA that generates a binary segmenta-
tion result, RMTL-Net generates a binary segmentation
result and three probability maps for tumor, peritumoral,
and background regions, respectively.

• Unlike MTL-COSA that uses the contour of segmented
tumors to find binary segmentation masks for tumor,
peritumoral, and background regions, RMTL-Net uses
probability maps generated from the network to estimate
tumor, peritumoral, and background regions in BUS
images and feed them as estimated prior medical knowl-
edge into the RAmodule to guide the classification task.
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FIGURE 4. BUS images containing benign tumors (the first three columns) and malignant tumors (the last three columns). The first row shows images
from dataset UDIAT and the second row shows images from dataset BUSI.

• Unlike MTL-COSA that extracts the peritumoral region
by dilating the segmented tumor boundary, RMTL-Net
is trained to generate respective probability maps for
tumor, peritumoral, and background regions to gather
more detailed categorical information than the binary
masks extracted by MTL-COSA.

• UnlikeMTL-COSAwhose peritumoral region has a ring
area of width of 5 pixels evenly covering the background
and tumor areas, RMTL-Net extracts a bigger peritu-
moral region with a ring-like area of width of 32 pixels
outside of the tumor to provide sufficient information at
the lowest resolution to facilitate classification.

• Unlike MTL-COSA that uses self-attention to learn
important classification features, RMTL-Net replaces it
with the RA module to significantly reduce network
parameters by 14.40% and reduce both training and
testing times yet achieve better overall segmentation and
classification performance.

1) NETWORK ARCHITECTURE
The detailed network architecture of the proposed RMTL-Net
is illustrated in Fig. 3. RMTL-Net is a two-stage framework
that consists of a segmentation stage and a classification
stage. The segmentation stage utilizes a U-shape architecture
consisting of an encoder, a decoder, and skip connections to
extract multi-scale features and predict three respective prob-
ability maps for tumor, peritumoral, and background regions,
as shown in the last three columns in Fig. 2. The classification
stage uses shared features extracted from the encoder and
three probability maps generated from the segmentation stage
to produce classification results. Specifically, we use the peri-
tumoral region to capture boundary characteristics, which are
useful to differentiate benign and malignant tumors. We use
the tumor region to capture the shape properties of tumors,
which are useful for both tumor segmentation and classifi-
cation. We use the background region to capture posterior
acoustic shadowing, which is observed more for malignant
lesions and less for benign tumors due to attenuation of
the sonographic signal [27], [38]. Sharing features makes
segmentation and classification promote each other during
the training process. In addition, It addresses the problem of

having insufficient training images for classification. Each
pixel is a training sample in segmentation. Sharing features
with the segmentation stage with sufficient training samples
improves the overall accuracy and robustness of the classifi-
cation stage.

We use ResNet-101 [24] as the backbone of the segmen-
tation stage of RMTL-Net due to its great performance in
BUS image segmentation and classification [18], [26]. The
architecture of ResNet-101 remains the same. Specifically,
the encoder utilizes one convolutional layer Conv1 together
with four residual blocks (Conv2_x to Conv5_x) to perform
five down-sampling operations to extract multi-scale features
from input images.Multi-scale features extracted byConv1 to
Conv5_x are of sizes 128 × 128 × 64, 64 × 64 × 256, 32 ×

32×512, 16×16×1024, and 8×8×2048, respectively. The
decoder symmetrically utilizes four deconvolutional blocks
(Deconv4 to Deconv1) and one convolutional layer (Conv2)
followed by bilinear interpolation and softmax operations to
perform up-sampling operations. Skip connections between
the encoder and decoder combine feature maps in different
scales to compensate for the loss of spatial information during
down-sampling operations and to refine segmentation out-
comes. As a result, multi-scale features are restored to the
original input size and are further interpreted to predict three
probability maps.

We use three probability maps generated from the seg-
mentation stage of RMTL-Net and multi-scale high-level
features shared by both segmentation and classification stages
to produce classification results.

2) REGIONAL ATTENTION MODULE
Unlike classical image classification networks (e.g.,
VGG [23] and ResNet [24]), we add a regional attention (RA)
model to further encourage information sharing. This RA
model outputs a weighted feature vector of size 1×2048 that
is passed to a fully connected layer to generate more accurate
classification results.

We observe benign and malignant tumors exhibit differ-
ent characteristics. For example, benign tumors tend to be
smooth and round and malignant tumors are always rough
with an aspect ratio of greater than 1 [27], [28]. Benign
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FIGURE 5. An overview of the proposed Regional Attention (RA) module.

tumors tend to have smooth, thin, and regular margins and
malignant tumors tend to have spiculated, thick, and irregular
margins. Benign tumors tend to have less posterior acoustic
shadowing in the background region than malignant lesions.
As a result, we propose to utilize tumor, peritumoral, and
background regions to learn their inherently important char-
acteristics including tumor features (e.g., component, inter-
nal echo, and aspect ratio), tumor boundary patterns (e.g.,
smoothness, shape, and contextual texture between tumor
and surrounding tissues), and background features (posterior
acoustic shadowing) [27], [35] to help with the joint seg-
mentation and classification tasks. In addition, we propose
to include a RA module in the classification stage of the
RMTL-Net to encourage information sharing and output a
weighted feature vector to facilitate classification. This RA
module combines multi-scale high-level features with three
probability maps generated from the segmentation stage to
guide the learning of category-sensitive features from three
regions, namely, tumor, peritumoral, and background regions.
Category-sensitive features are represented as a weighted
feature vector, which is passed to a fully connected layer to
generate more accurate classification results. Fig. 4 shows six
examples of BUS images from each of the two datasets that
contain benign and malignant tumors, respectively. Tumor
regions with high variability in shape, size, and location are
delineated by red lines. When using these images as training
images, we generate their pseudo ground truth peritumoral
and background regions using the pre-processing method
explained in Section II-A2. When using these images as
testing images, RMTL-Net predicts their probability maps as
shown in Fig. 2.
The structure diagram of the proposedRAmodule is shown

in Fig. 5. The algorithmic view of the RA module is summa-
rized below:

Input: C5 (the feature map of size 8× 8× 2048 extracted
by Conv5_x of the encoder) and P (the probability map of
size 256 × 256 × 3 generated by the last convolutional layer
Conv2 of the decoder).

Output: A weighted feature map FW of size 1 × 2048.
1) Split P into three probability maps PT , PP, and PB of

size 256× 256, where subscripts T , P, and B represent
tumor, peritumoral, and background, respectively.

2) Employ the nearest neighbor method to resize PT , PP,
and PB to obtain coarse probability maps P′

T , P
′
P, and

P′
B of size 8 × 8.

3) Utilize a threshold of 0.5 to filter coarse probability
maps P′

T , P
′
P, and P

′
B to obtain three noise-free prob-

ability maps P′′
T , P

′′
P, and P

′′
B, respectively. Specifically,

values greater than 0.5 in coarse probability maps are
kept intact, and values smaller than or equal to 0.5 are
set to 0:

P′′
x = P′

x > 0.5 ?P′
x : 0 (1)

where subscript x can be replaced with T , P, or B.
4) Individually and elementwisely multiply P′′

x with each
channel of C5 to generate multi-channel weighted
regional feature maps Cx .

Cx = C5 · P′′
x (2)

5) Apply the global average pooling (GAP) on Cx to
capture weights of each region in its corresponding Gx
of size 1 × 2048:

Gx = GAP(Cx) (3)

6) ConcatenateGT ,GP, andGB to construct a new feature
vector F of size 3 × 2048:

F = Concatenate(GT ,GP,GB) (4)

7) Apply a 1 × 1 convolution filter to F to generate a
weighted feature map FW of size 1 × 2048.

FW = f 1×1(F) (5)

It should be noted that all non-zero pixels in P′′
T , P

′′
P,

and P′′
B have high likelihood values larger than 0.5, which

indicate high strength of tumor, peritumoral, and background
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features, respectively. We choose 0.5 as the threshold because
it classifies a pixel into one of the three classes. The multi-
plication of C5 and P′′

T , P
′′
P, and P

′′
B leads to multi-channel

weighted tumor, peritumoral, and background features CT ,
CP, and CB. The GAP operation further finds the features
in each channel of CT , CP, and CB to best represent three
respective regions. The concatenation operation followed by
the 1×1 convolution constructs a weighted sum ofmulti-view
features from three parallel channels (i.e., GT , GP, and GB),
which can be formulated as:

FW = w1 · GT + w2 · GP + w3 · GB (6)

where w1, w2, and w3 indicate the importance of tumor,
peritumoral, and background regions, respectively. These
weights are automatically learned during the training process.
Finally, FW is passed to a fully connected layer followed
by a softmax activation function for automated tumor clas-
sification. FW captures the importance of each region for
better feature representation and therefore leads to better
classification results than using a non-weighted feature map
(i.e., convolvingC5 with a feature vector of 1×2048). In sum-
mary, the proposed RA module follows the perspectives of
radiologists to learn multi-view features from three regions in
BUS images to achieve better segmentation and classification
performance. Specifically, the tumor region helps to extract
the basic features of breast tumors. The peritumoral region
helps to capture tumor boundary patterns. The background
region helps to collect contextual information.

3) LOSS FUNCTION
The overall loss of RMTL-Net is computed by the weighted
sum of the loss of the segmentation task Lseg and the loss of
the classification task Lcls.

L = λ · Lseg + (1 − λ) · Lcls (7)

where λ and 1 − λ are contribution weights of losses from
segmentation and classification tasks, respectively. Cross
entropy is employed to compute both Lseg and Lcls.
Let K denote the number of classes in a given task, N

denote the number of images, and P denote the number
of pixels in an image. In the segmentation task, there are
3 classes representing tumor, peritumoral, and background
regions. In other words, K = 3. The pixel-wise cross entropy
Lseg of the segmentation task is computed as follows:

Lseg = −
1
P

P∑
p

K∑
k

yp,k · log ŷp,k (8)

where yp,k and ŷp,k represent the true and predicted proba-
bility of pixel p belonging to class k , respectively. The true
probability yp,k is either 0 or 1 since each pixel belongs to
one of the three classes. The predicted probability ŷp,k is in
the range of [0, 1].
In the classification task, there are 2 classes representing

benign and malignant tumors. In other words, K = 2. The

image-wise cross-entropy Lcls of the classification task is
computed as follows:

Lcls = −
1
N

N∑
n

K∑
k

yn,k · log ŷn,k (9)

where yn,k and ŷn,k represent the true and predicted category
of image n belonging to class k , respectively. Both yn,k and
ŷn,k are either 0 or 1.

III. EXPERIMENTAL SETUP AND RESULTS
In this section, we first present the implementation details.
We then describe the performance evaluation metrics fol-
lowed by the competing methods. Finally, we present the
experimental results of the proposed RMTL-Net method,
its ablation study, and its comparison with the competing
methods.

A. IMPLEMENTATION DETAILS
The implementation of the proposed method is based on
the public platform PyTorch 1.4. All experiments are con-
ducted on Ubuntu 18.04 system, Intel(R) Core(TM) CPU i5-
11600K 3.9. All models are trained and tested on a GeForce
RTX 3080 Ti graphics card with 12GB memory using the
ADAM optimizer with momentum β1 of 0.9, momentum
β2 of 0.99, a weight decay of 0.0001, and a learning rate ini-
tialized at 0.0001 and decayed at 10% after every 20 epochs.
In the training procedure, the batch size is set as 16 and
the number of training epochs is set as 100. Following the
empirically optimal setup [24], we adopt batch normalization
right after each convolution and before activation. To reduce
overfitting, we adopt dropout with a probability of 0.5 in
the fully connected layer of the classification network. The
contribution weight of loss from the segmentation task (i.e.,
λ) is empirically set to be 0.9. All competingmethods, includ-
ing ResNet, UResNet, MTL-Net, MTL-COSA, and RMTL-
Net models, are pre-trained on ImageNet and fine-tuned
with training images selected from datasets UDIAT
and BUSI.

To evaluate the performance of different methods, we con-
duct five-fold cross-validation in all experiments, includ-
ing multi-task learning, ablation, and comparative studies.
Because the size of dataset UDIAT is small, there is 3%
classification performance differences between multiple runs
even if we use five-fold cross-validation to train and test on
it. To increase the credibility of experimental results, we train
all competing methods on two datasets together and test on
two datasets separately. Specifically, for each dataset, we split
the data into five groups, where each group keeps the same
proportion of benign and malignant cases as in the original
dataset. In each fold experiment, four groups of each dataset
are combined and used as the training set, and the other group
is used as the testing set. In this study, all experimental results
are reported by averaging the five-fold cross-validation per-
formance.
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TABLE 1. A brief comparison of 11 SOTA methods and the proposed RMTL-Net.

B. PERFORMANCE EVALUATION
We employ commonly-used BUS segmentation metrics [9],
[15], [17], [18], [30], [31] including sensitivity (SEN), speci-
ficity (SPE), accuracy (ACC), dice similarity coefficient
(DSC), and intersection over the union of tumor (tumor IoU)
to quantitatively evaluate the segmentation performance.
Higher values of these metrics represent better segmentation
performance. Specifically, SEN and SPE measure the ability
of a model to correctly identify all tumor pixels and back-
ground pixels in BUS images, respectively; ACC reports the
percent of correctly segmented tumor pixels in BUS images;
both DSC and tumor IoU are positively correlated and mea-
sure the spatial overlap between the predicted segmentation
result and ground truth. However, DSC tends to measure the
average-case performance and tumor IoU tends to measure
the worst-case performance. These metrics are calculated as
follows:

SEN =
TP

TP+ FN
(10)

SPE =
TN

TN + FP
(11)

ACC =
TP+ TN

TP+ TN + FP+ FN
(12)

DSC =
2TP

2TP+ FP+ FN
(13)

IoU =
TP

TP+ FP+ FN
(14)

where TP represents true positives (i.e., the number of true
tumor pixels that are correctly predicted to be tumor pix-
els), FP represents false positives (i.e., the number of true
background pixels that are wrongly predicted to be tumor
pixels), FN represents false negatives (i.e., the number of true
tumor pixels that are wrongly predicted to be background
pixels), and TN represents true negatives (i.e., the number
of true background pixels that are correctly predicted to be
background pixels). Since only two kinds of pixels (tumor
and background) are involved in evaluating the segmentation
performance, we consider all the pixels in the predicted back-
ground and peritumoral regions as background pixels and all
the pixels in the predicted tumor region as tumor pixels.

We employ commonly-used BUS classification met-
rics [19], [22], [26], [30], [31] including SEN, SPE, ACC,
precision (PRE), F1-score (F1), and area under receiver oper-
ating characteristic curve (AUC) to quantitatively evaluate
the classification performance. Higher values of these met-
rics represent better classification performance. Specifically,
SEN, SPE, and ACC are computed in the same manner as
the segmentation metrics of the same names. However, TP,
TN , FP, and FN are defined differently when evaluating
classification. TP and TN respectively represent the number
of BUS images that are correctly predicted as benign images
(i.e., a positive class) and malignant images (i.e., a negative
class). FP and FN respectively represent the number of BUS
images that are incorrectly predicted as benign and malignant
images. F1-score is the same as DSC. AUC is a summary
of the receiver operating characteristic (ROC) curve, which
shows the performance of a model at all classification thresh-
olds. A higher AUC value represents better classification
performance. PRE computes the ratio of correctly predicted
positive samples to the total predicted positive samples. It is
computed as follows:

PRE =
TP

TP+ FP
(15)

C. COMPETING METHODS
Table 1 briefly summarizes the task nature and enhanced
features of the proposed RMTL-Net and 11 state-of-the-
art (SOTA) methods. Specifically, we compare RMTL-Net
with three recent single-task classification methods (e.g.,
VGG-16 [23], ResNet-101 [24], and DenseNet [39]), four
recent single-task segmentation methods (e.g., FCN [40],
PSPNet [41], Deeplab v3+ [42], and U-ResNet), and four
recent MTL methods (e.g., MTL-Net, MTL-COSA [32],
SHA-MTL [30], and Residual U-Net [31]). U-ResNet is a U-
Net [16] with ResNet-101 as its backbone. MTL-Net passes
features extracted by Conv5_x of U-ResNet into a GAP layer
followed by a fully connected layer for classification. Table 1
shows that some of these compared methods employ feature
enhancement strategies such as attention mechanism and skip
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connections to improve segmentation and classification per-
formance.

D. RESULTS
1) MULTI-TASK LEARNING
All compared multi-task learning (MTL) methods including
MTL-Net, MTL-COSA [32], SHA-MTL [30], Residual U-
Net [31], and the proposed RMTL-Net compute their total
loss as the weighted sum of both segmentation and classifi-
cation losses. In other words, they use the hyperparameter λ

in (7) to balance segmentation and classification performance
during MTL. In this section, we evaluate the segmentation
and classification performance of RMTL-Net under different
λ values. We anticipate observing similar trends for the other
compared multi-task methods since MTL-Net, MTL-COSA,
and RMTL-Net use U-ResNet and others use a similar net-
work as their backbones.

Fig. 6 compares the segmentation results of RMTL-Net
under five λ values (e.g., 0.1, 0.3, 0.5, 0.7, and 0.9) on
two datasets. We calculate all five segmentation metrics to
evaluate the segmentation results on two datasets under five
λ values. It is interesting to observe that SPE and ACC seg-
mentation metrics yield similar values when using different
λ values. Specifically, SPE oscillates between a range of
98.97% and 99.25% on dataset UDIAT and between a range
of 97.75% and 98.02% on dataset BUSI. Similarly, ACC
oscillates between a range of 98.20% and 98.79% on dataset
UDIA and between a range of 94.96% and 96.28% on dataset
BUSI. As a result, we remove SPE and ACC results in Fig. 6
to show values of segmentation metrics SEN, DSC, and IoU,
where the narrow bar near the top of each bar indicates the
standard deviation and the values above two selected narrow
bars present the largest and smallest metric values obtained
under five λ values in five-fold experiments. It demonstrates
that SEN, DSC, and IoU values increase on both datasets
when λ increases, except for λ = 0.7 on dataset UDIAT.
Fig. 7 compares the classification results of RMTL-Net

under five λ values (e.g., 0.1, 0.3, 0.5, 0.7, and 0.9) on two
datasets.We calculate all six classification metrics to evaluate
the classification results on two datasets under five λ values.
We re-scale AUC to the range of [0, 100] to ensure all clas-
sification values are in the same range for easy display and
better understanding. Similar to Fig. 6, we use a narrow bar
to indicate the standard deviation for each metric and present
the largest and smallest metric values obtained under five λ

values in five-fold experiments. It is clear that the overall
classification performance of RMTL-Net tends to increase on
both datasets when λ increases, except for the SEN values on
both datasets.

RMTL-Net uses predicted probability maps to guide the
classification task to learn better feature representations and
achieve better classification results. As a result, accurate
segmentation may lead to a better classifier. Fig. 6 and Fig. 7
confirm that both segmentation and classification accuracy
tends to improve hand in hand when λ increases. Therefore,

we set λ = 0.9 for RMTL-Net to ensure that more weights are
given on the dominating task in the MTL framework. We also
use the same setting for all MTL methods to ensure a fair
comparison.

2) ABLATION STUDY OF RA MODULE
The regional attention (RA) module is a crucial component
of RMTL-Net. It utilizes predicted probability maps to guide
the classification network to learn multi-view features from
tumor, peritumoral, and background regions in BUS images.
To validate the effectiveness of the proposed RA module,
we conduct a detailed ablation study by combining informa-
tion from different region combinations. We list all variants
of RMTL-Net below:

• Variant 1 (MTL-Net): None of the three regions are
used.

• Variant 2 (MTL-Net + P): The peritumoral region is
used.

• Variant 3 (MTL-Net + T): The tumor region is used.
• Variant 4 (MTL-Net + B): The background region is
used.

• Variant 5 (MTL-Net + T + P): The tumor and peritu-
moral regions are used.

• Variant 6 (MTL-Net + P + B): The peritumoral and
background regions are used.

• Variant 7 (MTL-Net + T + B): The tumor and back-
ground regions are used.

• Variant 8 (proposed RMTL-Net): The tumor, peritu-
moral, and background regions are used.

For Variant 1, the feature map extracted by Conv5_x of
the encoder is directly passed to a GAP layer followed by
a fully connected layer for classification. For Variants 2, 3,
and 4, the weighted regional feature mapsCP, CT , and CB are
respectively passed to a GAP layer to obtain a new feature
vector GP, GT , and GB of size 1 × 2048, which are then
respectively passed to a fully connected layer for classifica-
tion. For variants 5, 6, and 7, multi-channel weighted regional
feature maps CT and CP, CP and CB, and CT and CB are
respectively passed to a GAP layer and concatenated to obtain
a new feature vector F of 2 × 2048. Their corresponding F
is then filtered by a 1 × 1 convolution to get their associ-
ated weighted feature vector Fw of 1 × 2048. Lastly, their
corresponding Fw is passed to a fully connected layer for
classification.
Tables 2 and 3 present the segmentation results of eight

systems in the ablation study in terms of SEN, SPE, DSC,
ACC, and Tumor IoU on datasets UDIAT and BUSI, respec-
tively. Tables 4 and 5 present the classification results of
eight systems in the ablation study in terms of SEN, SPE,
PRE, ACC, F1, and AUC on datasets UDIAT and BUSI,
respectively.We observe the following from the results shown
in these four tables: (1) Variant 1, which does not incor-
porate RA, achieves the worst overall segmentation perfor-
mance when compared with the other seven variant systems.
It achieves comparable overall classification performance as
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FIGURE 6. Segmentation results of RMTL-Net on two datasets under different λ values.

FIGURE 7. Classification results of RMTL-Net on two datasets under different λ values.

the other seven variant systems. (2) Variant 8, which uses
tumor, peritumoral, and background regions in the RA mod-
ule, achieves the best overall segmentation and classification
performance when compared with the other seven variant
systems. (3) Comparing three variants that use a single region
in the RA module, variant 4 involving the background region
achieves the best overall performance. Variant 3 involving the

tumor region achieves the second-best performance. Variant
2 involving peritumoral regions achieves the worst perfor-
mance. (4) Comparing three variants that use two of the three
regions in the RA module, variant 7 involving tumor and
background regions achieves the best performance. Variant
5 involving tumor and peritumoral regions achieves the worst
performance.
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TABLE 2. Segmentation performance (Mean ± SD) of ablation study on dataset UDIAT.

TABLE 3. Segmentation performance (Mean ± SD) of ablation study on dataset BUSI.

TABLE 4. Classification performance (Mean ± SD) of ablation study on dataset UDIAT.

TABLE 5. Classification performance (Mean ± SD) of ablation study on dataset BUSI.

For most BUS images, we observe that the background
region has the biggest size and the peritumoral region has the
smallest size. As a result, we assume that the larger the region,
the more information it can provide for both segmentation
and classification tasks. The experimental results shown in
Tables 2, 3, 4, and 5 seem to support this assumption. First,
either background, tumor, or peritumoral region plays an
important role in the segmentation task since variants 2, 3,
and 4 outperform variant 1 without using the RA module in
all segmentation metrics. Second, the background region of
C5 provides the most valuable information for both segmen-
tation and classification tasks since variant 4 achieves the best
performance among variants involving one region in the RA
module. The tumor region of C5 provides the second most
valuable information followed by the peritumoral region.

Third, variants involving two regions in the RA module
outperform variants involving one region in the RA module
since a combined larger region provides more information to
facilitate the learning process. Fourth, the variant involving
three regions in the RA module achieves the best perfor-
mance. Fifth, the weighted feature vector FW , which obtains
valuable information from multiple regions, better represents
BUS images than C5 without using the RA module.

3) COMPARISON WITH COMPETING METHODS
We implement all compared methods except for SHA-MTL
and Residual U-Net and conduct experiments using the same
parameters to ensure a fair comparison. The authors of
SHA-MTL and Residual U-Net did not provide sufficient
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TABLE 6. Segmentation performance (Mean ± SD) of all compared methods on Dataset UDIAT.

TABLE 7. Segmentation performance (Mean ± SD) of all compared methods on Dataset BUSI.

TABLE 8. Classification performance (Mean ± SD) of all compared methods on Dataset UDIAT.

TABLE 9. Classification performance (Mean ± SD) of all compared methods on Dataset BUSI.

details on their methods and did not publish their code either.
As a result, we directly use their reported segmentation and
classification results on dataset BUSI in our comparison.
We use the symbol of ‘‘—’’ to represent a missing result since
they did not report their results on each metric. Both methods
did not provide any results on dataset UDIAT. So they are
not includedwhen comparing segmentation and classification
results on dataset UDIAT.

Table 6 summarizes the segmentation results of RMTL-Net
and six methods in terms of five metrics on the dataset
UDIAT. Among four single-task segmentation methods,
Deeplabv3+ achieves the best overall segmentation perfor-
mance with the highest values of SEN, DSC, ACC, and tumor
IoU. PSPNet achieves the second-best overall segmentation
performance, followed by UResNet and FCN. Among three

MTL methods, the proposed RMTL-Net achieves the best
segmentation performance in all metrics except for SPE.
It improves the second-best method MTL-COSA by 2.54%,
1.62%, 0.02%, and 1.79% for SEN, DSC, ACC, and tumor
IoU, respectively.

Table 7 summarizes the segmentation results of RMTL-Net
and eight methods in terms of five metrics on the dataset
BUSI. Single-task segmentation methods exhibit similar per-
formance trends on dataset BUSI as on dataset UDIAT. The
three MTL methods including MTL-Net, MTL-COSA, and
RMTL-Net exhibit similar performance trends on dataset
BUSI as on dataset UDIAT. The proposed RMTL-Net
achieves the best overall segmentation performance and
improves the second-best method MTL-COSA by 3.23%,
1.14%, 0.06%, and 1.28% for SEN, DSC, ACC, and tumor
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IoU, respectively. Two MTL methods residual-U-Net and
SHA-MTL seem to lack credibility since residual-U-Net did
not report its standard deviation values for five runs on all
evaluation metrics and SHA-MTL reported different values
for two equivalent metrics DSC and F1 without giving any
explanation. In addition, residual-U-Net seems to have an
overfitting issue since its AUC values of five runs are 0.98,
1, 0.99, 0.97, and 1. As a result, we do not include these two
methods here for comparison and list their results in tables
for completeness.

Table 8 summarizes the classification results of RMTL-Net
and five methods in terms of six metrics on the dataset
UDIAT. Among three single-task classification methods,
ResNet achieves the best overall classification performance
with the highest values of SEN, ACC, F1, and AUC.
DenseNet achieves the second-best overall classification per-
formance, followed byVGG-16. Among threeMTLmethods,
the proposed RMTL-Net achieves the best classification per-
formance in all metrics. It improves the second-best method
MTL-COSA by 3.68%, 5.82%, 2.83%, 4.36%, 3.34%, and
1.02% for SEN, SPE, PRE, ACC, F1, and AUC, respectively.

Table 9 summarizes the classification results of RMTL-Net
and seven methods in terms of six metrics on the dataset
BUSI. Single-task classification methods exhibit similar per-
formance trends on dataset BUSI as on dataset UDIAT. The
three MTL methods including MTL-Net, MTL-COSA, and
RMTL-Net exhibit similar performance trends on dataset
BUSI as on dataset UDIAT. The proposed RMTL-Net
achieves the second-best overall classification performance
and MTL-COSA outperforms RMTL-Net by a little bit in
all metrics. Due to the lack of credibility, residual U-Net
and SHA-MTL are not included here for comparison and are
listed in tables for completeness.

Tables 6, 7, 8, and 9 demonstrate that RMTL-Net achieves
the best overall segmentation and classification results on
both datasets. It incorporates the RA module to improve
MTL-COSA by learning the importance of three predicted
probability maps representing tumor, peritumoral, and back-
ground regions. MTL-COSA incorporates self-attention to
improve MTL-Net by learning the importance of three
regions constructed from the predicted binary segmentation
mask. MTL-Net decreases the values of three segmentation
metrics including SEN, DSC, and tumor IoU (i.e., decreasing
the segmentation performance) when compared with the best
single-task segmentation method UResNet. This decrease
in performance is caused by reduced segmentation weight,
which was added to the classification task. Therefore, less
weight is employed in training to reduce segmentation errors.
However, incorporating attention to MTL-Net addresses this
issue to achieve comparable or better segmentation results
than UResNet and achieve comparable or better classification
results than ResNet.

Table 10 lists the number of trainable parameters of
all compared methods. It shows that MTL-Net increases
trainable parameters of UResNet by 0.004% via adding a
light-weight classification task. This simple addition utilizes

TABLE 10. Summary of the number of trainable parameters of all
compared methods.

segmentation results to guide the classification task, which
leads to comparable segmentation results as single-task seg-
mentation methods and better classification results than
single-task classification methods. Table 10 also shows
that both MTL-COSA and RMTL-Net increase the differ-
ent amounts of trainable parameters in networks such as
ResNet and UResNet by adding attention modules to learn
important regions. RMTL-Net has a simpler attention mech-
anism than MTL-COSA and therefore leads to a reduction
of 16.8% trainable parameters when compared with MTL-
COSA. It also outperforms MTL-COSA in segmentation on
both datasets and in classification on dataset UDIAT.

Fig. 8 presents the segmentation results of RMTL-Net and
six compared methods on four representative BUS images:
two in Dataset UDIAT as shown in the top two rows and
two in Dataset BUSI as shown in the bottom two rows. The
UDIAT BUS image on the first row contains a small tumor
with an irregular boundary. All methods fail to predict a clear
and accurate tumor boundary. FCN andMTL-Net completely
fail to detect the tumor region. UResNet mistakenly segments
a tumor-like region as a tumor. PSPNet, Deeplabv3+, and
MTL-COSA segment a tumor partially overlapping with the
ground truth. They achieve a tumor IoU value of 61.89%,
60.40%, and 69.23%, respectively. RMTL-Net yields a more
accurate segmentation result with the highest IoU value of
76.65%. The UDIAT BUS image on the second row contains
a small tumor. FCN, UResNet, and MTL-COSA segment a
much bigger tumor region than the ground truth and yield
a low tumor IoU value of 35.00%, 31.27%, and 40.98%,
respectively. PSPNet, Deeplabv3+, and MTL-Net achieve
better segmentation results with tumor IoU values of 59.42%,
51.01%, and 63.33%, respectively. RMTL-Net achieves the
best segmentation result and the highest tumor IoU value of
81.60%. The BUSI BUS image on the third row contains a
small tumor and a big tumor-like region. All methods except
for RMTL-Net mistakenly segment the tumor-like region as
tumor region and therefore yield low tumor IoU values less
than 55.00%. RMTL-Net segments the correct tumor region
and achieves large values close to 1 in almost all segmentation
metrics (i.e., 99.90% for SPE, 94.95% for DSC, 99.84% for
ACC, and 90.39% for IoU). The BUSI BUS image on the last

VOLUME 11, 2023 5389



M. Xu et al.: RMTL Framework for BUS Image Segmentation and Classification

FIGURE 8. Illustration of segmentation results. (a) BUS images; (b) Ground truth; Segmentation results obtained by (c) FCN; (d) PSPNet; (e) Deeplabv3+;
(f) UResNet; (g) MTL-Net; (h) MTL-COSA; (i) RMTL-Net.

row contains a small tumor with a blurry boundary. This small
tumor locates on the right side towards the middle row. MTL-
Net segments a completely wrong tumor region and obtains
the lowest IoU value of 0.00%. FCN, Deeplabv3+, and
MTL-COSA segment a partial tumor region and mistakenly
segment another tumor-like region. Their tumor IoU values
are 23.56%, 52.04%, and 32.67%, respectively. PSPNet and
UResNet segment a partial tumor region with a low IoU value
of 17.49%, and 32.58%, respectively. RMTL-Net segments
themost accurate tumor region and achieves the largest values
on all five segmentation metrics (94.98% for SEN, 99.91%
for SPE, 92.37% for DSC, 99.86% for ACC, and 85.82% for
IoU).

IV. DISCUSSIONS
A. ADVANTAGES AND POTENTIAL USEFULNESS
In this paper, we propose a novel MTL framework with a
RA module for BUS image segmentation and classification.
In general, advantages and potential usefulness of RMTL-Net
can be summarized as follows:

First, RMTL-Net simultaneously performs segmentation
and classification by utilizing predicted probability maps to
guide the classification task to focus on regions of differ-
ent importance. Single-task segmentation and classification
methods have been well-studied in the BUS research commu-
nity. However, simultaneous segmentation and classification
is more practical and appealing than single segmentation and
classification tasks, as it provides both tumor boundaries as
well as tumor category. As a result, MTL in BUS image
segmentation and classification is a promising direction that
is worthy of more exploration. Our study clearly shows that
adding a light-weight classification branch on most existing
segmentation methods, at least U-Net-based ones (e.g., URe-
sNet), increases very few parameters but yields both good
segmentation and classification results.

Second, RMTL-Net incorporates a three-region-based
attention module (i.e., RA module) to automatically assign
appropriate weights to tumor, peritumoral, and background

regions during the training procedure. The learned weights
help to find regions of importance for better feature rep-
resentations and therefore improve both the segmentation
and classification performance of an MTL method. The RA
module aligns well with doctors’ clinical perspectives on the
importance of tumor, peritumoral, and background regions.
The proposed RA module can be easily applied to any exist-
ing MTL methods to incorporate prior medical knowledge
into the attention model to improve the performance of
multiple tasks.

B. LIMITATION AND FUTURE WORK
The proposed RMTL-Net has some limits. First, a pre-
processing step is needed to generate pseudo ground truths of
peritumoral and background regions, which are indispensable
in the training procedure to help the network to learn and
produce three regions in any test images. Second, more com-
parison between the proposed RA module and other tradi-
tional spatial or channel attention modules needs to be further
conducted to prove the effectiveness of the RA module.

Due to the limited number of public BUS images, we do not
have a separate testing set and use five-fold cross-validation
to have every BUS image in the dataset validated and tested.
As a result, more BUS images need to be collected to generate
a large testing set to thoroughly test the generalization ability
of RMLT-Net and other competing methods on new BUS
images. These experiments are needed to prove the superi-
ority of RMTL-Net without overfitting concerns.

In the future, we will test our RMTL-Net on larger nuclei
segmentation and classification datasets and explore more
strategies to improve its generalization ability. We will also
compare the proposed RA module with more recent spatial
and channel attention modules to not only validate its effec-
tiveness but also find a new perspective to improve it.

V. CONCLUSION
In this study, we propose a regional-attentivemulti-task learn-
ing framework (RMTL-Net) for simultaneous BUS image
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segmentation and classification. The proposed RMTL-Net
adopts ResNet-101 as its backbone to extract features and uti-
lizes a regional attention (RA) module to automatically learn
weighted category-sensitive information from the tumor, per-
itumoral, and background regions in BUS images to more
accurately represent each BUS image for better segmenta-
tion and classification performance. We conduct extensive
five-fold cross-validation experiments on two public BUS
datasets DIAT and BUSI. Extensive experiments show that
RMTL-Net outperforms recent state-of-the-art single-task
segmentation methods, single-task classification methods,
and most MTL methods on two datasets.

Our proposed RMTL-Net sheds light on the new research
direction toward multi-task learning (MTL) in general
and simultaneous segmentation and classification for BUS
images in particular. To this end, we can easily convert any
existing segmentation network architecture to its counterpart
MTL network architecture at a low cost by adding a classifi-
cation branch to achieve comparable segmentation results and
better classification results. Adding a RA module to incor-
porate prior medical knowledge regarding the importance of
tumor, peritumoral, and background regions in BUS images
can help to learn a better feature representation for better
segmentation and classification results. The proposed RA
module can be easily applied to any existing MTL methods
and be easily modified based on different prior knowledge.
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