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g r a p h i c a l a b s t r a c t
� Apply new algorithms (PHATE and
MI) to visualize the Raman spectral
data.

� Raman spectroscopy was utilized to
monitor cellular responses to oxida-
tive stress.

� The health index was proposed to
quantitatively assess antioxidants
protection.

� A number of machine learning algo-
rithms were applied to analyze
Raman spectral data.

� Correlation between Raman spectra
and cytokine level was analyzed.
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Diesel exhaust particles (DEPs) are major constituents of air pollution and associated with numerous
oxidative stress-induced human diseases. In vitro toxicity studies are useful for developing a better
understanding of species-specific in vivo conditions. Conventional in vitro assessments based on oxida-
tive biomarkers are destructive and inefficient. In this study, Raman spectroscopy, as a non-invasive
imaging tool, was used to capture the molecular fingerprints of overall cellular component responses
(nucleic acid, lipids, proteins, carbohydrates) to DEP damage and antioxidant protection. We apply a
novel data visualization algorithm called PHATE, which preserves both global and local structure, to
display the progression of cell damage over DEP exposure time. Meanwhile, a mutual information (MI)
estimator was used to identify the most informative Raman peaks associated with cytotoxicity. A health
index was defined to quantitatively assess the protective effects of two antioxidants (resveratrol and
mesobiliverdin IXa) against DEP induced cytotoxicity. In addition, a number of machine learning
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Mutual information
Antioxidant
classifiers were applied to successfully discriminate different treatment groups with high accuracy.
Correlations between Raman spectra and immunomodulatory cytokine and chemokine levels were
evaluated. In conclusion, the combination of label-free, non-disruptive Raman micro-spectroscopy and
machine learning analysis is demonstrated as a useful tool in quantitative analysis of oxidative stress
induced cytotoxicity and for effectively assessing various antioxidant treatments, suggesting that this
framework can serve as a high throughput platform for screening various potential antioxidants based on
their effectiveness at battling the effects of air pollution on human health.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Air pollution is a major concern of the modern world, and has a
serious toxicological impact on human health and the environment
[1]. Diesel exhaust particles (DEPs) are one of the major compo-
nents of air pollution and are associated with numerous human
diseases, including cardiovascular diseases [2]; lung cancer [3];
vascular dysfunction which leads to thromboembolic disease and
hypertension [4]; neurotoxicity and strokes [5]; prenatal health
problems [6] and infertility [7]. At the cellular level, 10 mg ml�1

DEPs can substantially increase the production of reactive oxygen
species (ROS) and reduce mitochondrial activity [8], which can
induce oxidative damage to DNA, proteins and lipids [9]. In vitro
toxicity studies are species-specific, simpler than in vivo studies,
and can lead to a better understanding of in vivo conditions [10].
Conventional in vitro cytotoxicity assessments are based on
analyzing cellular oxidative stress biomarkers, such as 8-oxodG for
DNA damage [11], thiobarbituric acid reactive substances for lipid
peroxidation [12], and 2,4-dinitrophenylhydrazine for protein
peroxidation [12]. These assays are routinely utilized but are
destructive (e.g., via DNA/protein extraction or dye labelling) and
incapable of real-time measurement of cell behavior at the single
cell level. Therefore, there is an urgent need to assess cytotoxicity
using rapid, non-invasive methods and to develop new pharma-
ceutical drugs which will prevent the damage from air pollution to
human health.

Raman spectroscopy has been demonstrated as a non-invasive
and highly sensitive technique and has been widely applied to
study biological samples [13,14]. With the unique ability of single
living cell analysis in medium, Raman spectroscopy is specifically
suitable for detecting molecular variation [15] by monitoring the
spectral fingerprints of nucleic acids, proteins, lipids, and carbo-
hydrates in the exposed cells [16]. This capability of Raman spec-
troscopy offers a new instrumental approach to assess in vitro
cytotoxicity. The application of Raman spectroscopy in evaluating
cell biochemical changes has been achieved in normal DEP-
exposed human lung cells [17], anticancer drug-exposed naso-
pharyngeal carcinoma cells [18], and nanoparticle-induced
A549 cells [19]. Thus, it is hypothesized that the oxidative stress
induced on the cells via exposure to toxic substrates (e.g., DEPs) can
be detected by monitoring the specific Raman spectral signatures
(usually designated as characteristic peaks) of these cellular
components.

Natural products, as an alternative to pharmaceutical com-
pounds, have recently shown potential protection from particulate
matter (PM2.5, PM10)-induced toxicity [20]. Resveratrol (3, 5, 40-
trihydroxystilbene, RES) can be naturally extracted from red grapes,
berries, and other plants. It has been shown to exhibit antioxidant
and anti-tumor activities [21]. Manufacturers of RES commercial
supplements claim that they have various health benefits against
numerous diseases and have displayed nearly no adverse effects in
clinical studies [22]. Heme-derived bilins and bilirubin are natural
antioxidants [23]. As products of heme oxygenase-1, these bilins as
well as expression of the producing enzyme cytoprotect against
acute and chronic inflammatory conditions [24]. Mesobiliverdin
IXa (MesoBV), an analog of biliverdin IXa and derived from
photosynthetic cyanobacteria, was observed to inhibit lipid per-
oxidation and to cytoprotect pancreatic islets in a diabetic rat
model for islet xenotransplantation [25]. Given these properties,
our study examines the protective effects of RES and MesoBV
against DEPs in vitro.

Machine learning (ML) methods are broadly divided into two
categories: unsupervised methods, such as dimensionality reduc-
tion (e.g. principal component analysis or PCA, t-distributed sto-
chastic neighbor embedding or t-SNE) and clustering (e.g. K-means
and hierarchical cluster analysis); and supervised methods which
include classification or regression. Common supervised methods
include linear discriminant analysis (LDA), multiple linear regres-
sion, principal component regression, partial least squares (PLS), k-
nearest neighbors (kNN), support vector machines (SVM), and
random forests (RF). Unsupervised learning is often used as a pre-
cursor to supervised methods when working on large data sets, to
either reduce the number of data points via clustering [26] or to
reduce the dimensionality of the data [27]. PCA and t-SNE are un-
supervised methods commonly used for data pre-processing or
visualization. PCA makes use of an orthogonal transformation as a
means of eliminating collinearity and reducing the dimensionality
of the dataset. The scores may be used for cluster analysis (visual-
ization) or regression. But biological data are often highly nonlinear
[28], requiring the use of nonlinear methods for visualization,
analyzing variable dependence, and dimensionality reduction. t-
SNE assumes a non-linear manifold to find local relationships be-
tween datapoints and has been effectively used for high-
dimensional visualization [29]. However, t-SNE plots do not cap-
ture the global structure and have challenges in performing visu-
alization of very large data set, yielding a suboptimal and
potentially misleading visualization [30]. In addition, recent ap-
plications [31e35] of ML in Raman spectra classification have
shown its effectiveness in discriminating those samples with
desired high sensitivity and specificity. Nevertheless, little atten-
tion has been paid to develop algorithms for visualization of Raman
data, especially for the spectra collected from the progression of
biological process.

To overcome shortcomings from conventional algorithms, we
introduce two new methods in the context of Raman spectra data
analysis: a nonlinear dimensionality reduction and visualization
method called Potential of Heat-diffusion for Affinity-based Tran-
sition Embedding (PHATE) [27], and the GENIE estimator of mutual
information (MI) [36,37]. PHATE is well-suited to preserve pro-
gression in the data structure, such as the progression of stem cells
into different cell types as measured with single-cell RNA-
sequencing [27]. MI measures the general dependence of random
variables without making any assumptions about the nature of
their underlying relationships. MI was an effective feature selection
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criterion when applied to a database extracted from a non-small
cell lung cancer clinical dataset to effectively reduce the di-
mensions of a multidimensional time series for clinical data [38].

In our analysis of cellular Raman spectroscopy data, we use
PHATE and MI in addition to conventional ML methods to investi-
gate the effects of DEP exposure and the protectants RES and
MesoBV on human lung cells. As the flow chart shows (Fig. 1), PCA,
t-SNE and PHATE are used to visualize the spectral transition with
DEP exposure time. We use the MI to identify the most informative
Raman peaks to define a cell-health index for differentiating be-
tween the antioxidative effects of RES and MesoBV. Conventional
classification algorithms (LDA, kNN, RF and SVM) are also
performed.

2. Methods

2.1. Cell culture

A549 cells were purchased from ATCC (Manassas, VA, USA) and
cultured in F-12k medium containing 10% fetal bovine serum
(Thermo Fisher Scientific, Waltham, MA, USA) at 37 �C with 5% CO2
in a humidified atmosphere. DEPs (10 mg ml�1) were mixed with
2 mL culture medium and vortexed for 10 s, and subsequently
sonicated for 20 min at room temperature. A549 cells underwent
pretreatment with plain medium or medium containing RES or
MesoBV at 10 mM for 24 h. Subsequently, cells were treated with a
DEP solution for 0 (control), 4, 8, 16, 24 or 48 h. MesoBV was pro-
duced from phycocyanobilin recovered from lyophilized powders
of the cyanobacterium Spirulina platensis [25]. The quantification of
RES from an anonymous commercial supplement product was
performed by high performance liquid chromatography (HPLC,
Fig. S1).

2.2. Raman spectroscopy

The Raman spectra were measured by a Renishaw inVia Raman
spectrometer (controlled by WiRE 3.4 software, Renishaw, UK)
connected to a Leica microscope (Leica DMLM, Leica Microsystems,
Buffalo Grove, IL, USA), equipped with a 785 nm near-infrared (IR)
laser whichwas focused through a 63�NA¼ 0.90water immersion
objective (Leica Microsystems, USA). The standard calibration peak
for the spectrometer with silicon mode at a static spectrum was
520.5 ± 0.1 cm-1 A549 samples were cultured on MgF2 (United
Crystals Co., Port Washington, NY, USA) and imaged in Earle’s
Fig. 1. Flow chart of the machine learning-based Raman spectra analysis process. PCA:
principle component analysis; t-SNE: t-distributed stochastic neighbor embedding;
PHATE [27]; LDA: linear discriminant analysis; kNN: k nearest neighbors; RF: random
forests; SVM: support vector machine; MI: mutual information.
balanced salt solution (EBSS). Raman spectra between 600 and
1800 cm�1 wavenumbers were recorded for 1 accumulation of 10 s
laser exposure in static mode. After cells were pretreated with plain
medium or medium containing RES or MesoBV (10 mM) for 24 h,
DEPs were introduced into the 48hr exposure group (48 h prior to
measurement), followed by the 24, 16, 8 and 4 h exposure groups
(hours mean the time prior to measurement, respectively) with the
control (0 h) group last. All spectra of the five exposure and one
control groupswere collected at the same time (within 30min). Four
different treatments (Control, DEP, RES þ DEP and MesoBV þ DEP)
were included in Raman measurements. Five points on each cell
were randomly selected for measurements. 75 spectra (five points
for each cell and fifteen cells) in each time point for the DEP group
and 50 spectra (five points for each cell and ten cells) in each time
point for other groups were collected for further analysis. Raw
Raman spectrawerefirst baseline corrected by the asymmetric least
squares smoothing method in Origin 2018 (asymmetric factor:
0.001, threshold: 0.05, smoothing factor: 5, number of iterations:
10). One-way ANOVA was performed via Origin 2018 to examine
results from the study groups with P < 0.05 set as indicating a sta-
tistically significant difference.

2.3. Conventional classification

PCA is commonly used for unsupervised dimensionality reduc-
tion while PLS is a supervised dimensionality reduction technique.
Dimensionality reduction was performed using either PCA or PLS
before applying other ML methods. PCA-LDA, PLS-LDA were pro-
cessed in Origin 2018. PHATE, MI estimation, kNN, RF, and SVM
were performed using Matlab (version: 2019A). RF were computed
using Matlab’s TreeBagger function (80 trees); fitcknnwas used for
kNN classification, using k-values between 1 and 15. More details
on the machine learning algorithms are provided in the Supple-
mentary materials.

2.4. PHATE

PHATE is an unsupervisedML algorithm designed for visualizing
non-linear, high-dimensional data which accounts for both local
and global relationships in the data; in addition, PHATE denoises
the data and can visualize progression (such as changes over time)
for appropriate data sets [27]. The detailed algorithm can be seen in
Ref. [27]. The PHATE visualizations used default settings, 90%, 95%
and 99% variance of PCA components, and the optimal t-diffusion
parameter as computed via the algorithm using the von Neumann
entropy. The von Neumann entropy is computed using values of t
up to 100 (by default) and a “knee” point is used to determine the
optimal t. The custom code to estimate mutual information was
modified from the algorithm described in Ref. [36].

2.5. Mutual information

MI quantifies the level of information obtained about a random
variable through observations of another random variable [39].
Thus, MI can be viewed as a generalization of the correlation co-
efficient where the strength of nonlinear relationships is also
measured, whereas the correlation coefficient only measures the
strength of linear relationships. MI has many applications, one of
which is feature selection. We use MI in a feature selection context
to determine which wavenumbers might be used as a healthy
status indicator for cells. The GENIE estimator uses kernel density
estimators (KDE) to estimate the MI between the wavenumbers (X)
and the time of measurements (Y).We estimate the R�enyi-alpha MI
[36] using 10-fold cross validation and then rank the wavenumbers
based on the estimates.
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2.6. Cross-validation

PCA-LDA or PLS-LDA algorithms together with leave-one-out
cross validation are well documented in the literature. For
example, cross-validation was used in the diagnosis of nasopha-
ryngeal cancers [40] and chronic lymphocytic leukemia [41] with
satisfactory results. Here 10-fold cross validation was used for the
MI analysis and the classifiers in Section 2.3. Raman spectra at each
time point were randomly separated into ten groups with nine
groups reserved for training data and one group (10% of total data)
as testing data. Each group served as the test data once. In MI
analysis, the top wavenumbers that showed up at least nine times
in ten rotations were considered as the informative peaks. Higher
MI corresponds to a stronger relationship. Using this MI algorithm,
we are able to choose the number of top wavenumbers to view. In
classification analysis, the accuracy across all tested classifiers are
evaluated.

3. Results

3.1. Raman spectra in oxidative damage and antioxidant protection

Four groups of A549 cells including control without antioxidant
nor DEP treatment, DEP, RES þ DEP, and MesoBV þ DEP were non-
invasively measured by Raman spectroscopy at six DEP exposure
time points (0, 4, 8, 16, 24 and 48 h). The averaged raw Raman
spectra at different time points (Fig. 2) were initially pre-processed
by baseline correction as shown in Fig. S2. The spectra are relatively
constant across time in control groups with numerous peaks,
indicating the cells were consistent at the molecular composition
levels in normal culture systems. After the cells were exposed to
DEPs without antioxidant pretreatment (Fig. 2D), the spectra
pattern changed significantly with fewer characteristic peaks
throughout the 48-hrs of DEP exposure. This clearly demonstrates
that some important molecular structures in A549 cells were dis-
rupted by the introduction of DEPs. In contrast, the spectra in
RES þ DEP and MesoBV þ DEP groups (Fig. 2F&H) showed
“recovered” characteristic peaks but in different spectra patterns.
This may imply that the protective effect of RES and MesoBV on
cellular composition are exerted in different ways.
Fig. 2. Representative light images of single cells and corresponding averaged Raman spectr
All spectra are averaged from at least 50 measurements at each time point. Black dots indi
3.2. Raman data visualization

Using PCA, t-SNE and PHATE, we performed data visualization
on the Raman spectra to identify broader patterns in the data. The
PCA plots mostly overlap from 0 h to 48 h in the Raman spectra of
four treatment groups (Fig. 3A). The t-SNE plot shows a better
cluster (Fig. 3B) but is not able to distinguish or visualize the trend
of spectral changes, which contrasts with PHATE (Fig. 3C). In the
PHATE plots (90% variance of PC components), the measurements
from the DEP group (Fig. 3C, first row) tend to shift to the right
branch of the graph as time progresses, while the measurements
from the control group remain on the left branch of the scatterplot
(Fig. 3C, second row). This suggests that information about the
relative health of the cells is contained within the Raman spectra
where the left branch represents healthy cells, and the right branch
represents damaged cells. Although the axis is arbitrary and
dependent on the particular data set used, a threshold of 0.01 (light
blue plane) on the PHATE1 axis appears to be indicative of healthy
cells. The percentage of healthy cells in the control group that were
located left of this threshold throughout the whole period was
closed to 100% (Fig. 3D), while cells exposed to DEPs tended to be
unhealthy over time. The cells protected with RES or MesoBV dis-
played a different trend. The largest number of protected cells that
appeared to recover to the healthy side of the threshold occurred at
16 h. At later time points, fewer protected cells are located on the
healthy side. At 48 h, the percentage of healthy cells (as determined
by this threshold) reached 54.34% in the RES þ DEP group and
42.86% in MesoBV þ DEP group, compared to 28.79% in DEP group.
In addition, similar results were obtained using 95% or 99% variance
of PC components (Figs. S3e4), suggesting that these antioxidants
provide some protection against DEP exposure.

3.3. Raman feature extraction via mutual information estimation

To quantify the level of cell health during the 48 h of DEP
exposure, principal components (from PCA) that explain 90% of
variance were analyzed using LDA, but LDA was unable to accu-
rately classify the 6 time points of spectra in the DEP group
(Fig. S5A). We also analyzed the first 15 PLS factors that can explain
70% of the variance using LDA. In contrast, this approach shows
a in the control (AeB), DEP (CeD), RES þ DEP (EeF), and MesoBV þ DEP groups (GeH).
cate the spots where five spectra per cell were performed. Scale bar ¼ 10 mm.



Fig. 3. Data visualization by PCA, t-SNE, and PHATE. Score plots of (A) PCA, (B) t-SNE and (C) PHATE analysis. The threshold 0.01 of PHATE 1 (light blue plane) was set as the criterion
to separate healthy (left region) and unhealthy cells (right region). The percentage of healthy cells over time based on this threshold is shown in (D). (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)
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distinguishable group clusters (Fig. S5B), corroborating the results
obtained from PHATE. With increasing DEP exposure time, the
clusters separate further, indicating gradually deteriorating cell
structure during the 48-h period. However, PLS-LDA can only
qualitatively discriminate each damaging group. To identify spec-
tral markers that are most deterministic for indicating the cell
health, we used the GENIE estimator for MI. We hypothesize that a
suitable health index should decrease as DEP exposure time in-
creases in the unprotected cells while remaining relatively constant
in the control group over time. Therefore, we estimated the MI
between each measured spectrum (in wavenumber range
600e1800 cm�1) and DEP exposure time. A wavenumber with a
large MI value has a stronger relationship with exposure time than
a wavenumber with a smaller MI value (Table S1). The top wave-
numbers in the DEP group were concentrated near the 1600 cm�1

peak (Fig. 4A), with amonotonic trend of elevated intensity in these
wavenumbers as DEP exposure time increases (Fig. 4B).
It is interesting to note that the highest peak (1002 cm�1) in
each spectrum assigned to phenylalanine was shown as one of the
least informative peaks (Fig. S6). Furthermore, a statistical analysis
of the 1600 cm�1 peak in DEP groups at different time points
showed that this peak increases intensity with the most significant
differences (P < 0.05) among most time points (Fig. 4C). From this
analysis, we conclude that 1600 cm�1 is well-suited as the spectral
marker in our study to identify the cell health status in control or
antioxidant protected groups. We therefore propose to define the
health index (HI) as the following:

Health index ðHIÞ ¼ 1

� ðintensity of 1600cm�1 �200:838Þ
.

903:101;

where the intensity of 1600 cm�1 peak is the highest signal (in
counts) between the range of 1598e1602 cm�1 wavenumbers in



Fig. 4. Mutual Information analysis applied to the DEP group measurements: (A) top 15 wavenumbers based on the estimated mutual information noted by red spots on each
spectrum; (B) variation of the top 5 wavenumbers over 48 h. (C) Statistical analysis of 1600 cm�1 peak in DEP groups at different time points. (D) Radar plot of the health index at
each time point in all groups. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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each spectrum. 200.838 is the average intensity of the 1600 cm�1

peak at 0 h in the DEP group; 903.101 is the average intensity of the
1600 cm�1 peak at 48 h in the DEP group. By this definition, health
index plots cross four treatments in terms of time point are shown
in Fig. S7. In addition, a radar plot (Fig. 4D) clearly shows the HI
trends in all four groups. Briefly, the HI values in the control group
across all time points are near constant (very close to 1), running an
outside clockwise circle from 0 h to 48 h. In DEP group, the circle
falls into a “shrunk” cycle inside (unhealthy state); The antioxidant
groups do show the circle expanding toward to outside circle of the
control group (healthy state), indicating the protective effect from
the antioxidants. In contrast, the HI values (Fig. 4D) exhibit a
monotonic decreasing trend in the DEP group, indicating the cell
damaging effect induced by DEP exposure. The protected groups
have a similar HI value in the entire period.

3.4. Evaluation of health index in antioxidant protected cells

To determine the protective effects of each of the antioxidants, a
statistical analysis among four groups at each time point were
Table 1
Summary of the health index (HI) (mean ± SD) at all time points across four treat-
ment groups using 1600 cm�1 as the spectral marker.

Time (h) Control DEP RES þ DEP MesoBV þ DEP

0 1.0 ± 0.05 1.0 ± 0.07 0.85 ± 0.09b 0.94 ± 0.10b

4 1.0 ± 0.08 0.73 ± 0.37b 0.77 ± 0.30b 0.73 ± 0.31b

8 1.0 ± 0.07 0.72 ± 0.39b 0.74 ± 0.28b 0.77 ± 0.18b

16 1.0 ± 0.05 0.45 ± 0.55a,b 0.89 ± 0.16 0.84 ± 0.20
24 0.99 ± 0.08 0.33 ± 0.64a,b 0.76 ± 0.36b 0.80 ± 0.21
48 1.0 ± 0.08 0.22 ± 0.76a,b 0.74 ± 0.36b 0.78 ± 0.23

Note: a means significant difference versus DEP group at 0 h (P < 0.05). b means
significant difference versus control group at same time point (P < 0.05).
performed (Table 1, Fig. S7). At 0 h, as expected, the difference in HI
between the DEP and control groups (close to 1) is negligible. But
both antioxidant pretreatments induced slight cell changes even
without DEP exposure, as the RES þ DEP group had an HI of 0.85
and theMesoBVþDEP group had an HI of 0.94 at 0 h. At 4 h and 8 h,
there is no statistical difference (as the HI indicated) between the
DEP and antioxidant treated groups. From 16 to 48 h, the cell health
in the antioxidant treated groups (HI maintains 0.89e0.74) is pro-
foundly better than that of the DEP groups (HI decreased from 0.45
to 0.22), showing a turning point at 16 h. There is no statistical
difference between MesoBV þ DEP group and RES þ DEP group at
most time points (excepting 0 h). In comparison to their own
control group, the HI values in the RESþDEP group are significantly
different across most time points (excepting 16 h), while the
MesoBV þ DEP group only show significant difference with the
control group at 0e8 h. This implies that MesoBVmay have a better
protective effect against DEPs than RES at the same treatment
concentration level. It is interesting to note that the PHATE visu-
alization (Fig. 3) and the defined HI (Table 1) show the antioxidant
protection effect at 16 h. However, it is unclear whether recovery at
16 h depends on DEP composition and/or DEP concentration.

3.5. Raman data classification

Conventional classification models were applied to evaluate the
effect of DEPs and antioxidants on cell behavior. PCA (the number of
components were chosen to explain 80% of variance) or PLS
(components chosen to explain 80% of variance) were performed
for dimensionality reduction. The results show a much clearer
distinction of group clusters in PLS-LDA (Fig. S8) than those in PCA-
LDA (Fig. S9). A number of other popular classification algorithms
including RF, kNN and SVM (the basics of these algorithms are
contained in Supplementary Materials) were also used to calculate
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the mean accuracy of classification at each time point (Table 2). The
mean accuracy of classification at each time point were measured
using 10-fold cross validation across each group. Two examples of
calculation details for the accuracy for PLS-LDA and PLS-linear SVM
are summarized in Tables S2e3. PLS-LDA provides a mean accuracy
of about 75e85% at all time points, which is much better than PCA-
LDA (around 60e72%). Compared to the LDA-based classifiers, the
accuracy is generally improved for the kNN, RF and SVM classifiers.
Among three different SVM kernels, the linear polynomial offered
the best classification accuracy (all above 85%). Overall, the method
with the highest accuracy is the kNN classifier, reaching around 90%
in all time points.

3.6. Correlation analysis between whole Raman spectra and
inflammatory responses

Furthermore, the inflammatory responses were assessed and
correlatively analyzed with Raman spectra measurements. The
typical Raman spectrum is shown in Fig. 5A (see detailed tentative
assignments for these ten representative peaks in Table S4). The
change in the mean difference of Raman peak intensity between
treated and control cells in a given treatment group was calculated
as D-value [42] and shown in Raman-barcode graph (Fig. 5B). As
seen from the spectral barcode, the intensities of the 1313 (assigned
to collagen/lipid) and 1600 cm�1 (assigned to protein) peaks clearly
increased over time in the DEP group. It is interesting to note that
the 1319 cm�1 identified by MI analysis is very close to the peak at
1313 cm�1 selected by Raman-barcode analysis. To test the effec-
tiveness of using the 1313 cm�1 as another potential spectral
marker, the peak counts at 1313 cm�1 are analyzed across all time
points in the DEP group. A monotonic trend was also found
(Fig. S10A). The health index (HI) values calculated using the
1313 cm�1 peak also showed the pattern of the changes across four
treatment groups (Fig. S10B) that are visible in the 1600 cm�1 peak
(Fig. 4D). The statistical analysis was summarized in Table S5.
Overall, HI values calculated using 1313 or 1600 cm�1 show very
similar results, except using 1313 cm�1 results in a relatively higher
standard deviation. Thus, the 1600 cm�1 peak selected by both the
MI algorithm and D-value calculation is an optimal peak that is
used for our HI definition and calculation.

In addition to Raman spectra, the inflammatory responses of
A549 cells were also assessed by human cytokine/chemokine panel
(detailed methods in Supplementary Materials). Exposure of
A549 cells to RES and MesoBV each in combination with DEP and
DEP alone caused changes in the levels of pro-inflammatory (IL-6)
[43] and inflammatory immunomodulatory cytokines and chemo-
kines IL-1b, IL-8, GROa, І-309 [44e46] (Fig. S11). IL-1b, GROa, І-309
showed no or small elevations over 24 h following initial exposure
to DEP. In all cases, MesoBV pretreatment caused significantly
higher secretion rates of these cytokines or chemokines compared
to DEP alone. IL-6 showed an initial decrease (4 h) upon DEP
exposure and a subsequent gradual increase up to 48 h, but pre-
treatment with MesoBV resulted in IL-6 levels below those of DEP
Table 2
The mean accuracy of different classification methods at each time point.

Time (h) Classification methods

PCA-LDA PLS-LDA PLS-RF PLS-kNN

0 68.61% 74.62% 87.08% 90.18%
4 72.51% 79.89% 85.86% 89.71%
8 63.35% 84.26% 82.94% 87.45%
16 63.65% 84.55% 90.74% 92.19%
24 59.45% 70.27% 86.10% 91.07%
48 65.33% 82.26% 83.42% 88.70%
alone at all time intervals measured. In contrast chemokine IL-8
was observed to increase after treatment with either RES or Mes-
oBV. MesoBV elevated IL-8 higher than with RES across all time
points except 24 h. Overall, RES and MesoBV exhibited different
responses with IL-6 but similar responses with IL-8. These differ-
ences could be due to divergent regulatory signaling pathways. RES
regulatory pathways involve PI3K/Akt and mitogen-activated pro-
tein kinase (MAPK) [47], while MesoBV pathways involve heme
oxygenase I, PKC-bII/TNF-a or MAPK/PI3K pathways [48]. RES
pretreatment resulted in levels of IL-6, IL-8, IL-17, and GROa, that
exceeded levels with DEP alone at all time intervals up to 24 h, but
no or little differences in levels of IL-1b and I-309.

The averaged levels of cytokine/chemokines were paired with
Raman spectra measurements, according to group and time points,
to generate the 24 � 1300 matrix of correlation coefficients. The
counter maps composed of Spearman correlations (Fig. 5C) dem-
onstrates that most Raman peaks have relatively low correlation
(�0.3 to 0.3) with cyto-/chemokine expression. Briefly, thymus and
activation regulated chemokine (TARC), Regulated upon Activation,
Normal T Cell Expressed and Presumably Secreted (RANTES),
monocyte chemoattractant protein 2 (MCP-2) are most positively
(~0.3, red spots) correlatedwith wavenumber 678 cm�1 assigned to
guanine (the circled region in Fig. 5C), followed by IFNg, IL-23, IL-6,
IL-4, IL-2. Whereas I-309 and MCP-1 are most negatively (~-0.3)
correlated with wavenumber 678 cm�1. The Spearman correlation
maps of individual groups are illustrated in Fig. S12, which are very
similar to Pearson correlation (Fig. S13). In these correlation maps,
it is interesting to note that the relationship between Raman
spectra and cytokine/chemokine profiling exhibits the overall trend
across three treatment groups: DEP group has more positive cor-
relation (more red bars), followed by RES þ DEP group showing
more negative correlation (more blue bars) and MesoBV þ DEP
group (scatterred red/blue bars), implying the difference in anti-
oxidant activity in protecting DEP induced cytotoxicity.

4. Discussion

Raman spectroscopy is a universal technique for characterizing
substances in life science, material research, and geological expe-
ditions [49]. Univariate analysis of Raman spectra is typically not
applicable, because of the overlapping of Raman peaks from
different molecules. This shortcoming has been addressed by the
application of numerical algorithms necessary for an accurate peak
assignment and further emphasizing spectral variations among
various treated samples [50]. A variety of ML algorithms
[31e35,51,52] have been applied alongside Raman spectroscopy for
this purpose and have gained popularity in life science applications.
These methods basically read all of the spectra sequentially, extract
only meaningful information from each spectrum, and then cate-
gorize the datasets based upon relevant information.

Our data shows the superior advantage of PHATE over PCA and
t-SNE in visualizing Raman data, where PHATE is better able to
identify the progression of cell behavior (Fig. 3). PCA scores capture
PLS-SVM linear PLS-SVM RBF PLS-SVM linear polynomial

85.03% 91.23% 88.31%
89.86% 82.40% 85.01%
85.33% 77.81% 84.02%
90.65% 87.04% 89.64%
87.76% 77.49% 85.69%
88.55% 78.14% 85.26%



Fig. 5. Raman-barcode of cellular-response to stressors. (A) A representative Raman spectrum in the control group labeled with ten characteristic peaks, (B) D-value in three
treatment groups (DEP, RES þ DEP, MesoBV þ DEP), and (C) Spearman correlation map to 24 cytokine/chemokines (including all groups and time points of Raman data). The change
in Raman band intensity at particular wavenumbers were calculated as the difference (D-value) between treated and control cells.
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the largest variance in the dataset (globally) but local relationships
may remain hidden. However, t-SNE is based on a non-convex
optimization problem which does not guarantee convergence to
the global optimum. Additionally, the plotted t-SNE embeddings
are sensitive to the tuning parameter and can be easily mis-
interpreted [53]. In contrast, PHATE produces a low-dimensional
representation of high-dimensional data which preserves both
the local and global structure. In addition, PHATE may be used to
model transitions over time or space which is more difficult to
achieve using PCA or t-SNE [27].

Among the numerous classification algorithms, kNN shows the
best accuracy of classification in our Raman data (Table 2). For a
given problem, the best algorithmmay be affected by, among many
other factors, the variance among explanatory variables, the num-
ber of explanatory variables, the number of noisy explanatory
variables, and the number of observations [54]. LDA, as a linear
classifier, makes classification decisions based on linear combina-
tions of the training data. A major advantage of such methods is
speed: given certain data, they can make comparable classification
accuracy as non-linear methods in a fraction of the time. However,
if the data is not linearly separable, lower accuracy may be attained
[55]. SVM finds the optimal soft-margin separating hyperplane to
learn classification boundaries. The hyperplane may be constructed
in the original data space or may be kernelized to better separate
data which is not linearly separable. SVM relies on only a few
support vectors and is thus not sensitive to outliers. Non-linear
classifiers such as kNN and RF are commonly-used as non-
parametric models which are likely to outperform linear models
on data sets which are not linearly separable [55]. kNN and RF deal
well with outliers and noisy data, which may have played a sig-
nificant role in their high classification accuracy [56], especially in
biological data, which is inherently noisy. Neither of these classi-
fiers make any assumptions about the model by which the datawas
generated and are thus adapted to many datasets.

None of these above-mentioned classification algorithms quan-
titatively differentiate the cell behaviors in different treatments.We
used MI estimation, which gives a quantitative measure of variable
importance in Raman spectra analysis to successfully quantify the
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cell health index in all situations. The MI analysis identified
1600 cm�1 as the representative peak of cell health, which is
assigned to aromatic ring stretch (C]C), often referred as phenyl-
alanine (protein). Raman spectral peaks are widely used to monitor
the cell toxicity, as summarized in Table S6. Most peaks were re-
ported to decrease as cells died, such as 788, 1320, 1342 and
1660 cm�1. Some representative peaks have controversial responses
to toxic treatment, including 1005, 1231 cm�1. Interestingly, two
major peaks, 642 (assigned to nucleic acid) and 1395-1425 cm�1

(assigned to lipid),were found to increase in dead cells, implying the
disordered structure of these macromolecules in unhealthy cells. It
may not be always true that the 1600 cm�1 peak can serve as a cell
healthmarker in other settings, but a similarMI analysis can help to
identify the most valuable peak in a particular situation.

The ML methods used in this work enabled us to evaluate the
protective effects of the two tested antioxidants. The classification
analysis qualitatively shows the different effects of RES andMesoBV
against DEPs (Figs. S8e9). PHATE (Fig. 3) shows an overall pro-
gression of cell status changes overtime. More importantly, our
proposed health index shows a recovery from DEP damage with
antioxidant protection that is well-maintained over a period of
48 h. The statistical analysis based on our HI suggests that MesoBV
performs slightly better than RES at the same treatment concen-
tration (10 mM). Both 1600 and 1313 cm�1 peak were identified by
MI algorithm and D-value calculation, although 1600 cm�1 showed
better performance than 1313 cm�1 as spectral marker. When
combined with biological assessments, cell viability of all groups
was not affected while both antioxidants show a significant inhi-
bition of ROS production at all time points (Fig. S14) and promotion
of multiple cytokine/chemokine responses (Fig. S11) against DEP
exposure. Under our current experimental conditions, it seems the
ROS production is not time-dependent (Fig. S14D). Similar phe-
nomena were reported for other antioxidants against effects of a
variety of toxic agents [57e59]. Our data show that Raman spec-
troscopic measurement of molecular fingerprints of cells exposed
to oxidative stress (where themajority of the cells are alive) is more
sensitive than ROS production assays (where the stained cells are
dead). Further in vitro cell-based studies, such as dependence of
concentration (DEP and antioxidant) and cell type (primary lung
cells versus lung cancer cell) on cellular responses, are necessary to
determine the health benefit of antioxidant-based supplement
products as potential pharmaceuticals against air pollution.

5. Conclusion

We employed multiple ML algorithms to analyze high-volume
Raman spectra data for different purposes. PHATE outperforms
PCA and t-SNE, visualizing well the progression of cell damage by
DEP exposure and indicates the trend of recovery of cell health in
the presence of antioxidant. MI analysis identifies the most infor-
mative Raman peak that is used as a spectral marker to quantita-
tively predict the cell damage and antioxidant protection. This
further demonstrates the possibility of the selection of spectral
markers (defined as a health index in this study) to prescreen the
protective effectiveness of various antioxidants, such as MesoBV
and RES, against DEP exposure. Conventional classification algo-
rithms including LDA, kNN, random forest, and SVM were used for
discrimination among four treatment groups at the same time
point. Additionally, the correlation analyses between Raman data
and cytokine/chemokine responses (as immunomodulatory bio-
markers) provides a proof-of-concept application, whichmay allow
a deeper understanding of overall cellular response. Our findings
provide a combination of Raman spectroscopy and ML tools, which
can serve as a high throughput platform in screening various po-
tential antioxidants in in vitro anti-toxicity studies.
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